《neural network and deep learning》题解——ch03 如何选择神经网络的超参数

2024-06-02 04:38

本文主要是介绍《neural network and deep learning》题解——ch03 如何选择神经网络的超参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/u011239443/article/details/77748116

问题一

上一节有问题也是调参,我们在这里讲解:

更改上面的代码来实现 L1 规范化,使用 L1 规范化使用 30 个隐藏元的神经网络对 MNIST数字进行分类。你能够找到一个规范化参数使得比无规范化效果更好么?

如何修改代码可参阅上节:http://blog.csdn.net/u011239443/article/details/77649026#t5

当无规范化时,我们将上节的代码update_mini_batch中做修改:

self.weights = [w - (eta / len(mini_batch)) * nw for w, nw inzip(self.weights, nabla_w)]

total_cost中去掉:

cost += 0.5 * (lmbda / len(data)) * sum(np.linalg.norm(w) ** 2 for w in self.weights)

为了加快我们的训练,我们使得将训练集设置为1000,验证集设置为100:

net.SGD(training_data[:1000],30,10,0.5,evaluation_data=validation_data[:100],monitor_evaluation_accuracy=True)

结果:

Epoch 30 training complete
Acc on evaluation: 17 / 100

加入 L1 , λ = 100.0 时,结果:

Epoch 30 training complete
Acc on evaluation: 11 / 100

λ = 10.0 时,结果:

Epoch 29 training complete
Acc on evaluation: 11 / 100

λ = 1.0 时,结果:

Epoch 30 training complete
Acc on evaluation: 31 / 100

所以当λ = 1.0 时使,可以使得比无规范化效果更好。

问题二

修改 network2.py 来实现提前终止,并让 n 回合不提升终止策略中的 n 称为可以设置的参数。

随机梯度函数多加一个参数max_try:

    def SGD(self, training_data, epochs, mini_batch_size, eta,lmbda=0.0,evaluation_data=None,monitor_evaluation_cost=False,monitor_evaluation_accuracy=False,monitor_training_cost=False,monitor_training_accuray=False,max_try = 100):

cnt 记录不提升的次数,如达到max_try,就退出循环。这里用monitor_evaluation_accuracy举例:

        cnt = 0for j in xrange(epochs):......if monitor_evaluation_accuracy:acc = self.accuracy(evaluation_data)evaluation_accurary.append(acc)if len(evaluation_accurary) > 1 and acc < evaluation_accurary[len(evaluation_accurary)-2]:cnt += 1if cnt >= max_try:breakelse:cnt = 0print "Acc on evaluation: {} / {}".format(acc, n_data)......

问题三

你能够想出不同于 n 回合不提升终止策略的其他提前终止策略么?理想中,规则应该能够获得更高的验证准确率而不需要训练太久。将你的想法实现在 network2.py 中,运行这些实验和 3 回合(10 回合太多,基本上训练全部,所以改成 3)不提升终止策略比较对应的验证准确率和训练的回合数。

策略与实现

多一个参数x,当提升率小于x,则停止。

随机梯度函数多加一个参数max_x:

    def SGD(self, training_data, epochs, mini_batch_size, eta,lmbda=0.0,evaluation_data=None,monitor_evaluation_cost=False,monitor_evaluation_accuracy=False,monitor_training_cost=False,monitor_training_accuray=False,min_x = 0.01):

当提升率小于x,则停止。这里用monitor_evaluation_accuracy举例:

            if monitor_evaluation_accuracy:acc = self.accuracy(evaluation_data)evaluation_accurary.append(acc)if len(evaluation_accurary) > 1 and \(acc - evaluation_accurary[len(evaluation_accurary)-2])*1.0/(1.0*n_data) < min_x:breakprint "Acc on evaluation: {} / {}".format(acc, n_data)

对比

10 回合不提升终止策略:

net.SGD(training_data[:1000],50,10,0.25,5.0,evaluation_data=validation_data[:100],monitor_evaluation_accuracy=True,max_try=3)

的结果:

Epoch 32 training complete
Acc on evaluation: 15 / 100

提升率小于x停止策略:

Epoch 3 training complete
Acc on evaluation: 17 / 100

问题四

更改 network2.py 实现学习规则:每次验证准确率满足满足 10 回合不提升终止策略时改变学习速率;当学习速率降到初始值的 1/128 时终止。

对问题二中的代码进行稍微的修改,128 = 2 ^ 7 。所以,多加个计数 del_cnt 记录学习率减小的次数:

        cnt = 0del_cnt = 0for j in xrange(epochs):......if monitor_evaluation_accuracy:acc = self.accuracy(evaluation_data)evaluation_accurary.append(acc)if len(evaluation_accurary) > 1 and acc < evaluation_accurary[len(evaluation_accurary)-2]:cnt += 1if cnt >= max_try:del_cnt += 1if del_cnt >= 7:breaketa /= 2.0cnt = 0   else:cnt = 0print "Acc on evaluation: {} / {}".format(acc, n_data)

问题五

使用梯度下降来尝试学习好的超参数的值其实很受期待。你可以想像关于使用梯度下降来确定 λ 的障碍么?你能够想象关于使用梯度下降来确定 η 的障碍么?

  • 使用梯度下降来确定 λ 的障碍在于,

    得:
    $ \frac{∂C}{∂λ} = \frac{\sum_ww^2}{2n} = 0$
    最优化目标使得 w = 0,但是 w 也是我们原来需要优化的。

  • 使用梯度下降来确定 η 的障碍在于,η 的最优解不是一个常数,随着迭代次数的增加,η 的最优解会越来越小。

这里写图片描述

这篇关于《neural network and deep learning》题解——ch03 如何选择神经网络的超参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023053

相关文章

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

exfat和ntfs哪个好? U盘格式化选择NTFS与exFAT的详细区别对比

《exfat和ntfs哪个好?U盘格式化选择NTFS与exFAT的详细区别对比》exFAT和NTFS是两种常见的文件系统,它们各自具有独特的优势和适用场景,以下是关于exFAT和NTFS的详细对比... 无论你是刚入手了内置 SSD 还是便携式移动硬盘或 U 盘,都需要先将它格式化成电脑或设备能够识别的「文

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

SpringBoot利用@Validated注解优雅实现参数校验

《SpringBoot利用@Validated注解优雅实现参数校验》在开发Web应用时,用户输入的合法性校验是保障系统稳定性的基础,​SpringBoot的@Validated注解提供了一种更优雅的解... 目录​一、为什么需要参数校验二、Validated 的核心用法​1. 基础校验2. php分组校验3