《搜索和推荐中的深度匹配》——2.5 延伸阅读

2024-06-02 04:18

本文主要是介绍《搜索和推荐中的深度匹配》——2.5 延伸阅读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重磅推荐专栏: 《Transformers自然语言处理系列教程》
手把手带你深入实践Transformers,轻松构建属于自己的NLP智能应用!

Query重构是解决搜索中查询文档不匹配的另一种方法,即将Query转换为另一个可以进行更好匹配的Query。Query转换包括Query的拼写错误更正。例如,【1】提出了一种源渠道模型,【2】 提出了一种用于该任务的判别方法。Query转换还包括Query分段【3】【4】【5】。受统计机器翻译 (SMT) 的启发,研究人员还考虑利用翻译技术来处理Query文档不匹配问题,假设Query使用一种语言而文档使用另一种语言。【6】利用基于单词的翻译模型来执行任务。【7】 提出使用基于短语的翻译模型来捕获查询中单词和文档标题之间的依赖关系。主题模型也可用于解决不匹配问题。一种简单而有效的方法是使用term匹配分数和主题匹配分数的线性组合【8】。概率主题模型也用于平滑文档语言模型(或Query语言模型)【9】【10】。 【11】对搜索中语义匹配的传统机器学习方法进行了全面调查。

在推荐方面,除了引入的经典潜在因子模型外,还开发了其他类型的方法。例如,可以使用预先定义的启发式在原始交互空间上进行匹配,例如基于项目的 CF【12】和统一的基于用户和基于项目的 CF【13】。用户-项目交互可以组织为二部图,在该图上执行随机游走以估计任意两个节点(一个用户和一个项目、两个用户或两个项目)之间的相关性【14】【15】。还可以使用概率图模型【16】对用户-项目交互的生成过程进行建模。为了结合各种辅助信息,例如用户配置文件和上下文,除了引入的 FM 模型外,还利用了张量分解【17】和集体矩阵分解【18】。我们向读者推荐了两篇关于传统推荐匹配方法的调查论文【19】【20】。

引文

【1】Brill, E. and R. C. Moore (2000). “An improved error model for noisy channel spelling correction”. In: Proceedings of the 38th Annual Meeting on Association for Computational Linguistics. ACL ’00. Hong Kong: Association for Computational Linguistics. 286–293.
【2】Wang, Z., G. Xu, H. Li, and M. Zhang (2011). “A fast and accurate method for approximate string search”. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies – Volume 1. HLT ’11. Portland, OR, USA: Association for Computational Linguistics. 52–61. url: http://dl.acm.org/citation.cf m?id=2002472.2002480.
【3】Bendersky, M., W. B. Croft, and D. A. Smith (2011). “Joint annotation of search queries”. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies – Volume 1. HLT ’11. Portland, OR, USA: Association for Computational Linguistics. 102–111. url: http://dl.acm.org/ citation.cf m?id=2002472.2002486.
【4】Bergsma, S. and Q. I. Wang (2007). “Learning noun phrase query segmentation”. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computa- tional Natural Language Learning (EMNLP-CoNLL). Prague, Czech Republic: Association for Computational Linguistics. 819–826. url: https://www.aclweb.org/anthology/D07-1086.
【5】Guo, J., G. Xu, H. Li, and X. Cheng (2008). “A unified and discrimina-
tive model for query refinement”. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’08. Singapore, Singapore: ACM. 379–386.
【6】Berger, A. and J. Lafferty (1999). “Information retrieval as statistical translation”. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’99. Berkeley, CA, USA: ACM. 222–229.
【7】Gao, J., J.-Y. Nie, G. Wu, and G. Cao (2004). “Dependence language
model for information retrieval”. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’04. Sheffield, UK: ACM. 170–177.
【8】Hofmann, T. (1999). “Probabilistic latent semantic indexing”. In: Pro- ceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’99. Berkeley, CA, USA: ACM. 50–57.
【9】Wei, X. and W. B. Croft (2006). “LDA-based document models for ad- hoc retrieval”. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’06. Seattle, Washington, DC, USA: ACM. 178– 185.
【10】Yi, X. and J. Allan (2009). “A comparative study of utilizing topic mod- els for information retrieval”. In: Proceedings of the 31th European
Conference on IR Research on Advances in Information Retrieval. ECIR ’09. Toulouse, France: Springer-Verlag. 29–41.
【11】Li.H. and J. Xu (2014). “Semantic matching in search”. Foundations and Trends in Information Retrieval. 7(5): 343–469.
【12】Sarwar, B., G. Karypis, J. Konstan, and J. Riedl (2001). “Item-based collaborative filtering recommendation algorithms”. In: Proceedings of the 10th International Conference on World Wide Web. WWW
’01. Hong Kong, Hong Kong: ACM. 285–295.
【13】Wang, J., A. P. de Vries, and M. J. T. Reinders (2006). “Unifying user- based and item-based collaborative filtering approaches by similarity fusion”. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’06. Seattle, Washington, DC, USA: ACM. 501– 508.
【14】Eksombatchai, C., P. Jindal, J. Z. Liu, Y. Liu, R. Sharma, C. Sugnet, M. Ulrich, and J. Leskovec (2018). “Pixie: A system for recommending 3+ Billion items to 200+ Million users in real-time”. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web,
WWW 2018, Lyon, France. 1775–1784.
【15】He, X., M. Gao, M.-Y. Kan, and D. Wang (2017b). “BiRank: Towards ranking on bipartite graphs”. IEEE Transactions on Knowledge and
Data Engineering. 29(1): 57–71.
【16】Salakhutdinov, R. and A. Mnih (2007). “Probabilistic matrix factor- ization”. In: Proceedings of the 20th International Conference on
Neural Information Processing Systems. NIPS’07. Vancouver, British Columbia, Canada: Curran Associates Inc. 1257–1264. url: http:// dl.acm.org/citation.cf m?id=2981562.2981720.
【17】Karatzoglou, A., X. Amatriain, L. Baltrunas, and N. Oliver (2010). “Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering”. In: Proceedings of the Fourth
ACM Conference on Recommender Systems. RecSys ’10. Barcelona,
Spain: ACM. 79–86.
【18】He, X., M.-Y. Kan, P. Xie, and X. Chen (2014). “Comment-based multi-view clustering of web 2.0 items”. In: Proceedings of the 23rd International Conference on World Wide Web. WWW ’14. Seoul, Korea: ACM. 771–782.
【19】Adomavicius, G. and A. Tuzhilin (2005). “Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions”. IEEE Transactions on Knowledge and Data Engineering. 17(6): 734–749.
【20】Shi, Y., M. Larson, and A. Hanjalic (2014). “Collaborative filtering
beyond the user-item matrix: A survey of the state of the art and
future challenges”. ACM Computing Surveys. 47(1): 3:1–3:45.

这篇关于《搜索和推荐中的深度匹配》——2.5 延伸阅读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023010

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

macOS彻底卸载Python的超完整指南(推荐!)

《macOS彻底卸载Python的超完整指南(推荐!)》随着python解释器的不断更新升级和项目开发需要,有时候会需要升级或者降级系统中的python的版本,系统中留存的Pytho版本如果没有卸载干... 目录MACOS 彻底卸载 python 的完整指南重要警告卸载前检查卸载方法(按安装方式)1. 卸载

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶