《搜索和推荐中的深度匹配》——1.5 近期进展

2024-06-02 04:18

本文主要是介绍《搜索和推荐中的深度匹配》——1.5 近期进展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重磅推荐专栏: 《Transformers自然语言处理系列教程》
手把手带你深入实践Transformers,轻松构建属于自己的NLP智能应用!

尽管传统的机器学习在搜索和推荐匹配方面取得了成功,但深度学习的最新进展为该领域带来了更为重大的进步,提出了许多深度匹配模型。深度学习模型的能力在于能够从原始数据(例如,文本)中学习匹配问题的分布式表示形式,避免手工制作功能的许多限制,并以端到端的方式学习表示形式和匹配网络。此外,深度神经网络具有足够的能力来对复杂的匹配任务进行建模。它们具有灵活性,可以自然地扩展到跨模式匹配,在这种模式下,可以学习通用语义空间来普遍表示不同模式的数据。所有这些特征有助于处理搜索和推荐的复杂性。

在搜索中,深度神经网络可以更有效地解决查询和文档之间的不匹配问题,包括前馈神经网络(FFN),卷积神经网络(CNN)和递归神经网络(RNN),因为它们具有更强大的功能表示学习和匹配功能学习的能力。最值得注意的是,来自Transformer(BERT)的双向编码器表示形式大大提高了搜索匹配的准确性,并成为当今最先进的技术。

在推荐中,最近的关注点已从以行为为中心的协作过滤转变为信息丰富的用户项匹配,如顺序、上下文感知和知识图增强的建议,​​这些推荐都是由实际场景驱动的。在技​​术方面,图神经网络(GNN)成为了一种用于表示学习的新兴工具【1】,因为推荐数据可以自然地组织在异构图中,并且GNN具有利用此类数据的能力。

参阅《图神经网络——【KDD 2019】KGAT》

为了处理用户行为序列数据,还采用了自注意力和BERT,这在顺序推荐中显示出令人鼓舞的结果【2】【3】

参阅《深度推荐模型——BERT4Rec [CIKM 19][Alibaba]》

引文

【1】Wang, X., X. He, Y. Cao, M. Liu, and T. Chua (2019a). “KGAT: Knowledge graph attention network for recommendation”. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4–8, 2019. 950–958.
【2】Sun, F., J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang (2019). “BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer”. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Manage-
ment. CIKM ’19. Beijing, China: ACM. 1441–1450.
【3】Yuan, F., X. He, H. Jiang, G. Guo, J. Xiong, Z. Xu, and Y. Xiong (2020). “Future data helps training: Modeling future contexts for session- based recommendation”. In: Proceedings of the Web Conference 2020. WWW ’20. Taipei, Taiwan: Association for Computing Machinery.
303–313.

这篇关于《搜索和推荐中的深度匹配》——1.5 近期进展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023003

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

macOS彻底卸载Python的超完整指南(推荐!)

《macOS彻底卸载Python的超完整指南(推荐!)》随着python解释器的不断更新升级和项目开发需要,有时候会需要升级或者降级系统中的python的版本,系统中留存的Pytho版本如果没有卸载干... 目录MACOS 彻底卸载 python 的完整指南重要警告卸载前检查卸载方法(按安装方式)1. 卸载

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶