c++中 unordered_map 与 unordered_set 用法指南

2024-06-02 03:28

本文主要是介绍c++中 unordered_map 与 unordered_set 用法指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

unordered_map 与 unordered_set 区别与联系

unordered_mapunordered_set 都是 C++ 标准模板库(STL)中的容器,它们使用哈希表作为底层数据结构,提供了快速的查找、插入和删除操作。下面是它们之间的联系与区别:

联系

  1. 底层实现:两者都基于哈希表实现,利用了哈希函数来分布元素。
  2. 性能特点:它们都提供平均时间复杂度为 O(1) 的查找、插入和删除操作。
  3. 冲突解决:两者都使用某种形式的链表或红黑树来解决哈希冲突。
  4. 非线性容器:它们都是非线性容器,不保证元素的顺序。

区别

  1. 存储内容

    • unordered_map 存储键值对,即每个元素包含一个键(key)和一个值(value),键是唯一的。
    • unordered_set 只存储唯一的值,不包含键。
  2. 用途

    • unordered_map 适用于需要通过键来访问或存储数据的场景,类似于关联数组或字典。
    • unordered_set 适用于需要存储唯一元素集合的场景,类似于集合。
  3. 操作

    • unordered_map 支持通过键来访问、插入、删除和查找值。
    • unordered_set 支持插入、删除和查找元素。
  4. 内存使用

    • unordered_map 由于需要存储键和值,通常比 unordered_set 使用更多的内存。
  5. 迭代器

    • unordered_map 的迭代器可以解引用为一个 pair,其中包含键和值。
    • unordered_set 的迭代器只能解引用为一个值。
  6. 示例
    在这里插入图片描述

  7. 元素查找

    • unordered_mapfind 方法返回一个迭代器,指向键值对,可以访问键和值。
    • unordered_setfind 方法返回一个迭代器,指向集合中的元素。

使用场景

  • 当你需要一个键来快速访问数据时,使用 unordered_map
  • 当你只需要存储一组不包含重复元素的数据时,使用 unordered_set

总的来说,unordered_mapunordered_set 在实现上有很多相似之处,但它们服务于不同的数据存储需求。选择使用哪一个取决于你的具体应用场景和需求。

unordered_map

unordered_map 是 C++ 中的一个关联容器,它存储了键值对,并且提供了快速的数据访问能力。

  1. 基本使用
#include <iostream>
#include <unordered_map>int main() {std::unordered_map<int, std::string> umap;umap[1] = "one";umap[2] = "two";umap[3] = "three";// 打印所有键值对for (const auto& pair : umap) {std::cout << pair.first << ": " << pair.second << std::endl;}
}
  • 输出结果:

1: one
2: two
3: three
在这里插入图片描述

  1. 初始化列表
#include <iostream>
#include <unordered_map>int main() {std::unordered_map<int, std::string> umap = {{1, "one"},{2, "two"},{3, "three"}};// 打印所有键值对for (const auto& pair : umap) {std::cout << pair.first << ": " << pair.second << std::endl;}
}
  • 输出结果:

1: one
2: two
3: three
在这里插入图片描述

  1. 访问元素
#include <iostream>
#include <unordered_map>int main() {std::unordered_map<int, std::string> umap = {{1, "one"},{2, "two"}};// 访问元素std::cout << "Value for key 1: " << umap[1] << std::endl;// 访问不存在的键将自动插入该键,并为其分配一个默认值std::cout << "Value for key 3: " << umap[3] << std::endl; // 默认值,例如空字符串
}
  • 输出结果:

Value for key 1: one
Value for key 3:
在这里插入图片描述

  1. 检查键是否存在
#include <iostream>
#include <unordered_map>int main() {std::unordered_map<int, std::string> umap = {{1, "one"},{2, "two"}};int key = 1;if (umap.find(key) != umap.end()) {std::cout << "Key " << key << " exists." << std::endl;}else {std::cout << "Key " << key << " does not exist." << std::endl;}
}
  • 输出结果:

Key 1 exists.
在这里插入图片描述

  1. 删除元素
#include <iostream>
#include <unordered_map>int main() {std::unordered_map<int, std::string> umap = {{1, "one"},{2, "two"}};int keyToRemove = 1;auto it = umap.find(keyToRemove);if (it != umap.end()) {umap.erase(it);}// 打印删除元素后的映射for (const auto& pair : umap) {std::cout << pair.first << ": " << pair.second << std::endl;}
}
  • 输出结果:

2: two
在这里插入图片描述

  1. 使用 emplace 插入元素
#include <iostream>
#include <unordered_map>int main() {std::unordered_map<int, std::string> umap;// 使用 emplace 插入元素auto result = umap.emplace(1, "one");if (result.second) {std::cout << "Insert successful." << std::endl;}// 尝试再次插入相同的键result = umap.emplace(1, "uno");if (!result.second) {std::cout << "Insert failed, key already exists." << std::endl;}// 打印映射for (const auto& pair : umap) {std::cout << pair.first << ": " << pair.second << std::endl;}
}
  • 输出结果:

Insert successful.
Insert failed, key already exists.
1: one
在这里插入图片描述

  1. 遍历 unordered_map
#include <iostream>
#include <unordered_map>int main() {std::unordered_map<int, std::string> umap = {{1, "one"},{2, "two"},{3, "three"}};// 使用范围 for 循环遍历for (const auto& pair : umap) {std::cout << pair.first << ": " << pair.second << std::endl;}// 使用迭代器遍历for (auto it = umap.begin(); it != umap.end(); ++it) {std::cout << it->first << ": " << it->second << std::endl;}
}
  • 输出结果:

1: one
2: two
3: three
1: one
2: two
3: three
在这里插入图片描述

  1. 使用 unordered_map 的 size 和 empty
#include <iostream>
#include <unordered_map>int main() {std::unordered_map<int, std::string> umap = {{1, "one"},{2, "two"}};std::cout << "Size of umap: " << umap.size() << std::endl;std::cout << "Is umap empty? " << (umap.empty() ? "Yes" : "No") << std::endl;
}
  • 输出结果:

Size of umap: 2
Is umap empty? No
在这里插入图片描述

unordered_set

  1. 基本使用
#include <iostream>
#include <unordered_set>int main() {std::unordered_set<int> uset;uset.insert(10);uset.insert(20);uset.insert(30);std::cout << "Size of uset: " << uset.size() << std::endl;
}
  • 输出结果:

Size of uset: 3
在这里插入图片描述

  1. 初始化列表
#include <iostream>
#include <unordered_set>int main() {std::unordered_set<int> uset = { 10, 20, 30, 40, 50 };for (int num : uset) {std::cout << num << " ";}std::cout << std::endl;
}
  • 输出结果:

50 10 20 30 40
在这里插入图片描述

  1. 检查元素是否存在
#include <iostream>
#include <unordered_set>int main() {std::unordered_set<int> uset = { 1, 2, 3 };int key = 2;if (uset.find(key) != uset.end()) {std::cout << "Element " << key << " exists in uset." << std::endl;}else {std::cout << "Element " << key << " does not exist in uset." << std::endl;}
}
  • 输出结果:

Element 2 exists in uset.
在这里插入图片描述

  1. 删除元素
#include <iostream>
#include <unordered_set>int main() {std::unordered_set<int> uset = { 1, 2, 3 };int keyToRemove = 2;if (uset.erase(keyToRemove)) {std::cout << "Element removed from uset." << std::endl;}else {std::cout << "Element not found in uset." << std::endl;}for (int num : uset) {std::cout << num << " ";}std::cout << std::endl;
}
  • 输出结果:

Element removed from uset.
1 3
在这里插入图片描述

  1. 使用 emplace 插入元素
#include <iostream>
#include <unordered_set>int main() {std::unordered_set<int> uset;// 使用 emplace 插入元素auto result = uset.emplace(10);if (result.second) {std::cout << "Insert successful." << std::endl;}// 尝试再次插入相同的元素result = uset.emplace(10);if (!result.second) {std::cout << "Insert failed, element already exists." << std::endl;}
}
  • 输出结果:

Insert successful.
Insert failed, element already exists.
在这里插入图片描述

  1. 遍历 unordered_set
#include <iostream>
#include <unordered_set>int main() {std::unordered_set<int> uset = { 5, 10, 15, 20, 25 };// 使用范围 for 循环遍历for (int num : uset) {std::cout << num << " ";}std::cout << std::endl;// 使用迭代器遍历for (auto it = uset.begin(); it != uset.end(); ++it) {std::cout << *it << " ";}std::cout << std::endl;
}
  • 输出结果:

5 10 15 20 25
5 10 15 20 25
在这里插入图片描述

  1. 使用 unordered_set 的 size 和 empty
#include <iostream>
#include <unordered_set>int main() {std::unordered_set<int> uset = { 1, 2, 3 };std::cout << "Size of uset: " << uset.size() << std::endl;std::cout << "Is uset empty? " << (uset.empty() ? "Yes" : "No") << std::endl;
}
  • 输出结果:

Size of uset: 3
Is uset empty? No
在这里插入图片描述

  1. 清空 unordered_set
#include <iostream>
#include <unordered_set>int main() {std::unordered_set<int> uset = { 1, 2, 3, 4, 5 };uset.clear(); // 清空 usetstd::cout << "Is uset empty after clear? " << (uset.empty() ? "Yes" : "No") << std::endl;
}
  • 输出结果:

Is uset empty after clear? Yes
在这里插入图片描述

  1. 自定义哈希函数
#include <iostream>
#include <unordered_set>// 自定义哈希函数
struct custom_hash {std::size_t operator()(int x) const {return std::hash<int>()(x);}
};int main() {std::unordered_set<int, custom_hash> uset = { 1, 2, 3 };for (int num : uset) {std::cout << num << " ";}std::cout << std::endl;
}
  • 输出结果:

1 2 3
在这里插入图片描述

这篇关于c++中 unordered_map 与 unordered_set 用法指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022902

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基