代码随想录训练营Day 46|力扣完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ

本文主要是介绍代码随想录训练营Day 46|力扣完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.完全背包

视频讲解:带你学透完全背包问题! 和 01背包有什么差别?遍历顺序上有什么讲究?_哔哩哔哩_bilibili

https://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85.html 

代码:(动态规划)

#include <bits/stdc++.h>
using namespace std;
void test_completePack(vector<int>& weight, vector<int>& value, int V,int N){// dp数组的定义及初始化vector<int> dp(V + 1,0);// 完全背包j要正序遍历,保证物品不会只被添加一次for(int i = 0; i < N; i++){for(int j = weight[i]; j <= V; j++){dp[j] = max(dp[j],dp[j - weight[i]] + value[i]);}}cout << dp[V] << endl;
}
int main(){// 输入int N,V;cin >> N >> V ;vector<int> weight;vector<int> value;for(int i = 0; i < N; i++){int w;int v;cin >> w >> v;weight.push_back(w);value.push_back(v);}test_completePack(weight,value,V,N);return 0;
}

 思路:

01背包的滚动数组需要倒叙遍历,保证每个物品只被添加一次。而且,因为要求的dp值依赖于上一行的状态,只能先遍历物品,再遍历背包。

完全背包的滚动数组需要正序遍历,保证每个物品可以被添加多次。而且,因为要求的dp值只依赖同一行的之前求出来的dp值,先遍历物品还是背包都可以。

dp数组的含义:在物品可选种类为0~i的前提下,尽量装满容量为j的背包所获得的最大价值为dp[j]

dp数组的递推公式:和之前的一样dp[j] = max(dp[j],dp[j - weight[i]] + value[i])

dp数组的遍历顺序:正序遍历,先背包还是先遍历物品无所谓

dp数组初始化:为了不影响后序求最大值,全部初始化为0

2.零钱兑换2 

视频讲解:动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II_哔哩哔哩_bilibili

代码随想录

代码: (动态规划)

class Solution {
public:int change(int amount, vector<int>& coins) {vector<int> dp(amount + 1,0);dp[0] = 1;for(int i = 0; i < coins.size(); i++){for(int j = coins[i]; j <= amount; j++){dp[j] += dp[j - coins[i]];}}return dp[amount];}
};

 思路:

dp数组的含义:用coins里的下标为0~i的元素装满容量为j的背包的方法数为dp[j]

dp数组的递推公式: 和昨天做的目标和的递推公式一样,思路也一样

dp数组的遍历顺序:正序遍历,必须先遍历物品(因为求的是组合数)如果是先遍历背包,物品次序不同也会被算作不同的方法,这是在求排列数,不符合要求。

dp数组的初始化:dp[0] = 1 dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。  

3.组合总和 4

视频讲解:动态规划之完全背包,装满背包有几种方法?求排列数?| LeetCode:377.组合总和IV_哔哩哔哩_bilibili

代码随想录

代码:(动态规划)

class Solution {
public:int combinationSum4(vector<int>& nums, int target) {vector<int> dp(target + 1,0);dp[0] = 1;      for(int j = 0; j <= target; j++){for(int i = 0; i < nums.size(); i++){if(j >= nums[i] && dp[j] < INT_MAX - dp[j - nums[i]]){dp[j] += dp[j - nums[i]];}}}return dp[target];}
};

 思路:

dp数组的含义:用nums里的下标为0~i的元素装满容量为j的背包的方法数为dp[j]

dp数组的递推公式: 和昨天做的目标和的递推公式一样,思路也一样

dp数组的遍历顺序:正序遍历,必须先遍历背包,因为物品次序不同也会被算作不同的方法,我们在求排列数

dp数组的初始化:dp[0] = 1 dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。  

细节:为了使得递推公式不会越界访问元素,要加上判断条件 j >= nums[i] && dp[j] < INT_MAX - dp[j - nums[i]]

这篇关于代码随想录训练营Day 46|力扣完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022870

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La