Python-3.12.0文档解读-内置函数sorted()详细说明+记忆策略+常用场景+巧妙用法+综合技巧

本文主要是介绍Python-3.12.0文档解读-内置函数sorted()详细说明+记忆策略+常用场景+巧妙用法+综合技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


一个认为一切根源都是“自己不够强”的INTJ

个人主页:用哲学编程-CSDN博客
专栏:每日一题——举一反三
Python编程学习
Python内置函数

Python-3.12.0文档解读

目录

Python-3.12.0文档解读详细说明

功能描述

参数说明

用法示例

备注

进阶用法

参考资料

记忆策略

常用场景

示例1:基本排序

示例2:逆序排序

示例3:根据字符串长度排序

示例4:对包含字典的列表进行排序

示例5:多重排序(先按部门,再按薪资)

示例6:对元组列表进行排序

示例7:排序包含混合大小写字符串的列表

巧妙用法

技巧1:排序自定义对象列表

技巧2:按多个条件进行复杂排序

技巧3:对嵌套结构进行排序

技巧4:使用 sorted() 进行字符串排列组合

技巧5:根据条件过滤并排序

技巧6:自定义排序顺序(非标准排序)

综合技巧

技巧1:结合 sorted() 和 zip()对多个列表进行同步排序

技巧2:结合 sorted() 和 itertools.groupby() 对数据进行分组

技巧3:结合 sorted() 和 enumarate() 对带索引的数据进行排序

技巧4:结合 sorted() 和 set() 对集合进行排序

技巧5:结合 sorted() 和 pandas 库对数据框进行排序

技巧6:结合 sorted() 和 functools.cmp_to_key() 实现自定义复杂排序



详细说明

sorted(iterable, /, *, key=None, reverse=False)

功能描述

sorted() 函数根据 iterable 中的项返回一个新的已排序列表。

参数说明

  • iterable: 要排序的可迭代对象,如列表、元组、字符串等。
  • key (可选): 指定一个带有单个参数的函数,用于从 iterable 的每个元素中提取用于比较的键。例如,key=str.lower 将按照忽略大小写的字母顺序进行排序。默认值为 None,即直接比较元素。
  • reverse (可选): 一个布尔值。如果设为 True,则每个列表元素将按反向顺序进行排序。默认值为 False。

用法示例

# 按默认顺序排序
sorted_list = sorted([5, 2, 3, 1, 4])
print(sorted_list)  # 输出: [1, 2, 3, 4, 5]# 按反向顺序排序
sorted_list = sorted([5, 2, 3, 1, 4], reverse=True)
print(sorted_list)  # 输出: [5, 4, 3, 2, 1]# 使用 key 参数进行排序
sorted_list = sorted(["bob", "Alice", "eve"], key=str.lower)
print(sorted_list)  # 输出: ['Alice', 'bob', 'eve']

备注

  1. sorted() 函数确保排序是稳定的。稳定排序意味着不会改变比较结果相等的元素的相对顺序,这对于多重排序非常有用(例如,先按部门、再按薪级排序)。
  2. 排序算法只使用 < 运算符在项目之间进行比较。虽然定义一个 __lt__() 方法就足以进行排序,但 PEP 8 建议实现所有六个富比较运算符 (__lt__, __le__, __eq__, __ne__, __gt__, __ge__)。这将有助于避免在与其他排序工具(如 max())使用相同的数据时出现错误,因为这些工具依赖于不同的底层方法。实现所有六个比较运算符也有助于避免混合类型比较的混乱,因为混合类型比较可以调用反射到 __gt__() 的方法。

进阶用法

  • 使用 functools.cmp_to_key(): 如果你有一个老式的比较函数(cmp 函数),可以使用 functools.cmp_to_key() 将其转换为 key 函数,以便与 sorted() 一起使用。
from functools import cmp_to_keydef compare(x, y):if x < y:return -1elif x > y:return 1else:return 0sorted_list = sorted([5, 2, 3, 1, 4], key=cmp_to_key(compare))
print(sorted_list)  # 输出: [1, 2, 3, 4, 5]

参考资料

  • PEP 8 - Python 代码风格指南(https://peps.python.org/pep-0008/)
  • 排序指南(https://docs.python.org/zh-cn/3/howto/sorting.html)

记忆策略


函数名的含义:
sorted 是 sort 的过去分词形式,表示“已排序的”。这一点暗示了这个函数的作用是返回一个排序后的新列表。


常用场景

示例1:基本排序

# 原始列表包含未排序的数字
numbers = [4, 2, 9, 1, 5, 6]# 使用 sorted() 对列表进行排序,返回一个新的已排序列表
sorted_numbers = sorted(numbers)# 输出排序后的新列表
print(sorted_numbers)  # 输出: [1, 2, 4, 5, 6, 9]

示例2:逆序排序

# 原始列表包含未排序的数字
numbers = [4, 2, 9, 1, 5, 6]# 使用 sorted() 并设置 reverse=True 对列表进行逆序排序
sorted_numbers_desc = sorted(numbers, reverse=True)# 输出逆序排序后的新列表
print(sorted_numbers_desc)  # 输出: [9, 6, 5, 4, 2, 1]

示例3:根据字符串长度排序

# 原始列表包含不同长度的字符串
words = ["apple", "banana", "cherry", "date"]# 使用 sorted() 并设置 key 参数为 len 函数,对字符串长度进行排序
sorted_by_length = sorted(words, key=len)# 输出按长度排序后的新列表
print(sorted_by_length)  # 输出: ['date', 'apple', 'banana', 'cherry']

示例4:对包含字典的列表进行排序

# 原始列表包含字典,每个字典代表一个人及其年龄
people = [{"name": "John", "age": 25},{"name": "Jane", "age": 22},{"name": "Dave", "age": 30}
]# 使用 sorted() 并设置 key 参数为一个 lambda 函数,按年龄进行排序
sorted_by_age = sorted(people, key=lambda person: person["age"])# 输出按年龄排序后的新列表
print(sorted_by_age)
# 输出: [{'name': 'Jane', 'age': 22}, {'name': 'John', 'age': 25}, {'name': 'Dave', 'age': 30}]

示例5:多重排序(先按部门,再按薪资)

# 原始列表包含字典,每个字典代表一个员工及其部门和薪资
employees = [{"name": "John", "department": "HR", "salary": 5000},{"name": "Jane", "department": "Engineering", "salary": 7000},{"name": "Dave", "department": "HR", "salary": 6000},{"name": "Anna", "department": "Engineering", "salary": 6500}
]# 使用 sorted() 进行多重排序,先按部门排序,再按薪资排序
sorted_employees = sorted(employees, key=lambda emp: (emp["department"], emp["salary"]))# 输出按部门和薪资排序后的新列表
print(sorted_employees)
# 输出:
# [{'name': 'Anna', 'department': 'Engineering', 'salary': 6500},
#  {'name': 'Jane', 'department': 'Engineering', 'salary': 7000},
#  {'name': 'John', 'department': 'HR', 'salary': 5000},
#  {'name': 'Dave', 'department': 'HR', 'salary': 6000}]

示例6:对元组列表进行排序

# 原始列表包含元组,每个元组代表一个学生及其分数
students = [("John", 88),("Jane", 92),("Dave", 85)
]# 使用 sorted() 并设置 key 参数为一个 lambda 函数,按分数进行排序
sorted_by_score = sorted(students, key=lambda student: student[1])# 输出按分数排序后的新列表
print(sorted_by_score)
# 输出: [('Dave', 85), ('John', 88), ('Jane', 92)]

示例7:排序包含混合大小写字符串的列表

# 原始列表包含混合大小写的字符串
words = ["banana", "Apple", "cherry", "Date"]# 使用 sorted() 并设置 key 参数为 str.lower,对字符串进行不区分大小写的排序
sorted_case_insensitive = sorted(words, key=str.lower)# 输出按不区分大小写排序后的新列表
print(sorted_case_insensitive)  # 输出: ['Apple', 'banana', 'cherry', 'Date']

巧妙用法

sorted() 函数在 Python 中不仅仅是一个简单的排序工具,还可以通过一些巧妙的使用技巧来实现更复杂的操作。以下是一些一般人可能想不到的使用技巧,它们展示了 sorted() 函数的强大和灵活性:

技巧1:排序自定义对象列表

可以通过 sorted() 函数和自定义的 key 函数对自定义对象列表进行排序。

# 定义一个自定义类
class Person:def __init__(self, name, age):self.name = nameself.age = agedef __repr__(self):return f"{self.name} ({self.age})"# 创建一个 Person 对象的列表
people = [Person("John", 25), Person("Jane", 22), Person("Dave", 30)]# 使用 sorted() 对 Person 对象列表按年龄进行排序
sorted_people = sorted(people, key=lambda person: person.age)# 输出排序后的 Person 对象列表
print(sorted_people)  # 输出: [Jane (22), John (25), Dave (30)]

技巧2:按多个条件进行复杂排序

可以使用多个 key 条件来对数据进行复杂排序,例如先按一个条件排序,再按另一个条件排序。

# 原始列表包含字典,每个字典代表一个员工及其部门和薪资
employees = [{"name": "John", "department": "HR", "salary": 5000},{"name": "Jane", "department": "Engineering", "salary": 7000},{"name": "Dave", "department": "HR", "salary": 6000},{"name": "Anna", "department": "Engineering", "salary": 6500}
]# 使用 sorted() 进行多重排序,先按部门排序,再按薪资排序
sorted_employees = sorted(employees, key=lambda emp: (emp["department"], emp["salary"]))# 输出按部门和薪资排序后的新列表
print(sorted_employees)
# 输出:
# [{'name': 'Anna', 'department': 'Engineering', 'salary': 6500},
#  {'name': 'Jane', 'department': 'Engineering', 'salary': 7000},
#  {'name': 'John', 'department': 'HR', 'salary': 5000},
#  {'name': 'Dave', 'department': 'HR', 'salary': 6000}]

技巧3:对嵌套结构进行排序

可以通过 sorted() 对嵌套的数据结构(例如列表中的列表或字典中的字典)进行排序。

# 原始列表包含嵌套的列表,每个子列表代表一个人的信息
nested_list = [["John", {"age": 25}],["Jane", {"age": 22}],["Dave", {"age": 30}]
]# 使用 sorted() 并设置 key 参数为一个 lambda 函数,对嵌套的 age 进行排序
sorted_nested_list = sorted(nested_list, key=lambda item: item[1]["age"])# 输出按年龄排序后的嵌套列表
print(sorted_nested_list)
# 输出: [['Jane', {'age': 22}], ['John', {'age': 25}], ['Dave', {'age': 30}]]

技巧4:使用 sorted() 进行字符串排列组合

可以使用 sorted() 函数对字符串中的字符进行排序,从而生成所有字符的排列组合。

# 原始字符串
s = "python"# 将字符串转换为字符列表并使用 sorted() 进行排序
sorted_chars = sorted(s)# 将排序后的字符列表重新组合成字符串
sorted_string = ''.join(sorted_chars)# 输出排序后的字符串
print(sorted_string)  # 输出: 'hnopty'

技巧5:根据条件过滤并排序

可以结合列表解析和 sorted() 函数,根据特定条件对数据进行过滤并排序。

# 原始列表包含未排序的数字
numbers = [4, 2, 9, 1, 5, 6, 10, 3]# 使用列表解析和 sorted() 对大于 5 的数字进行排序
sorted_filtered_numbers = sorted([n for n in numbers if n > 5])# 输出过滤并排序后的新列表
print(sorted_filtered_numbers)  # 输出: [6, 9, 10]

技巧6:自定义排序顺序(非标准排序)

可以通过自定义的排序顺序来对数据进行排序,例如按特定规则对字符串排序。

# 自定义的排序顺序
order = {'low': 0, 'medium': 1, 'high': 2}# 原始列表包含不同优先级的字符串
priority = ["medium", "high", "low", "medium", "low", "high"]# 使用 sorted() 并设置 key 参数为查找自定义排序顺序的值进行排序
sorted_priority = sorted(priority, key=lambda x: order[x])# 输出按自定义顺序排序后的新列表
print(sorted_priority)  # 输出: ['low', 'low', 'medium', 'medium', 'high', 'high']

这些技巧展示了 sorted() 函数的灵活性和强大功能,通过巧妙的使用,可以实现许多复杂的数据排序任务。


综合技巧

结合 sorted() 函数和其他函数或方法,可以实现一些非常巧妙和复杂的操作。以下是几个非常巧妙的组合用法示例:

技巧1:结合 sorted() 和 zip()对多个列表进行同步排序

当有多个相关联的列表时,可以使用 zip() 将它们合并,然后使用 sorted() 进行同步排序,最后再解压缩回来。

# 原始列表
names = ["John", "Jane", "Dave"]
ages = [25, 22, 30]
salaries = [5000, 7000, 6000]# 使用 zip() 将多个列表合并成一个列表的元组
combined = list(zip(names, ages, salaries))# 使用 sorted() 对合并后的列表按年龄进行排序
sorted_combined = sorted(combined, key=lambda x: x[1])# 使用 zip(*iterable) 解压缩回多个列表
sorted_names, sorted_ages, sorted_salaries = zip(*sorted_combined)# 输出排序后的结果
print(sorted_names)      # 输出: ('Jane', 'John', 'Dave')
print(sorted_ages)       # 输出: (22, 25, 30)
print(sorted_salaries)   # 输出: (7000, 5000, 6000)

技巧2:结合 sorted() 和 itertools.groupby() 对数据进行分组

可以使用 sorted() 函数对数据进行排序,然后使用 itertools.groupby() 对数据进行分组。

import itertools# 原始列表包含字典,每个字典代表一个员工及其部门和薪资
employees = [{"name": "John", "department": "HR", "salary": 5000},{"name": "Jane", "department": "Engineering", "salary": 7000},{"name": "Dave", "department": "HR", "salary": 6000},{"name": "Anna", "department": "Engineering", "salary": 6500}
]# 使用 sorted() 按部门排序
sorted_employees = sorted(employees, key=lambda x: x['department'])# 使用 itertools.groupby() 对排序后的结果按部门进行分组
grouped_employees = itertools.groupby(sorted_employees, key=lambda x: x['department'])# 输出分组后的结果
for department, group in grouped_employees:print(department)for employee in group:print(employee)
# 输出:
# Engineering
# {'name': 'Jane', 'department': 'Engineering', 'salary': 7000}
# {'name': 'Anna', 'department': 'Engineering', 'salary': 6500}
# HR
# {'name': 'John', 'department': 'HR', 'salary': 5000}
# {'name': 'Dave', 'department': 'HR', 'salary': 6000}

技巧3:结合 sorted() 和 enumarate() 对带索引的数据进行排序

可以使用 sorted() 函数结合 enumerate() 对带有索引的数据进行排序。

# 原始列表包含未排序的数字
numbers = [4, 2, 9, 1, 5, 6]# 使用 enumerate() 为每个元素添加索引,然后使用 sorted() 按值进行排序
sorted_with_index = sorted(enumerate(numbers), key=lambda x: x[1])# 输出排序后的结果,包含原始索引
print(sorted_with_index)
# 输出: [(3, 1), (1, 2), (0, 4), (4, 5), (5, 6), (2, 9)]

技巧4:结合 sorted() 和 set() 对集合进行排序

可以使用 sorted() 函数对集合(set)进行排序,因为集合是无序的。

# 原始集合包含未排序的数字
numbers_set = {4, 2, 9, 1, 5, 6}# 使用 sorted() 对集合进行排序,返回一个列表
sorted_numbers = sorted(numbers_set)# 输出排序后的列表
print(sorted_numbers)  # 输出: [1, 2, 4, 5, 6, 9]

技巧5:结合 sorted() 和 pandas 库对数据框进行排序

如果使用 pandas 库处理数据,可以结合 sorted() 函数对数据框进行排序。

import pandas as pd# 创建一个 DataFrame
data = {'name': ['John', 'Jane', 'Dave', 'Anna'],'age': [25, 22, 30, 28]
}
df = pd.DataFrame(data)# 使用 sorted() 对 DataFrame 按年龄排序
sorted_df = df.loc[sorted(df.index, key=lambda x: df.loc[x, 'age'])]# 输出排序后的 DataFrame
print(sorted_df)
# 输出:
#    name  age
# 1  Jane   22
# 0  John   25
# 3  Anna   28
# 2  Dave   30

技巧6:结合 sorted() 和 functools.cmp_to_key() 实现自定义复杂排序

可以使用 functools.cmp_to_key() 函数将自定义比较函数转换为 sorted() 函数可接受的 key 函数,从而实现复杂的自定义排序。

from functools import cmp_to_key# 自定义比较函数
def compare(a, b):# 按绝对值大小进行比较return abs(a) - abs(b)# 原始列表包含正负数
numbers = [4, -2, -9, 1, -5, 6]# 使用 sorted() 和 cmp_to_key() 对列表按绝对值进行排序
sorted_numbers = sorted(numbers, key=cmp_to_key(compare))# 输出排序后的列表
print(sorted_numbers)  # 输出: [1, -2, 4, -5, 6, -9]

这些巧妙的组合用法展示了 sorted() 函数在与其他函数和方法结合使用时的强大功能。通过这些技巧,可以实现更加复杂和灵活的数据操作。


感谢。

这篇关于Python-3.12.0文档解读-内置函数sorted()详细说明+记忆策略+常用场景+巧妙用法+综合技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022566

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地