Codeforces Round 949 (Div. 2 ABCD) 视频讲解

2024-06-02 00:44

本文主要是介绍Codeforces Round 949 (Div. 2 ABCD) 视频讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A. Turtle and Piggy Are Playing a Game

Problem Statement

Turtle and Piggy are playing a number game.

First, Turtle will choose an integer x x x, such that l ≤ x ≤ r l \le x \le r lxr, where l , r l, r l,r are given. It’s also guaranteed that 2 l ≤ r 2l \le r 2lr.

Then, Piggy will keep doing the following operation until x x x becomes 1 1 1:

  • Choose an integer p p p such that p ≥ 2 p \ge 2 p2 and p ∣ x p \mid x px (i.e. x x x is a multiple of p p p).
  • Set x x x to x p \frac{x}{p} px, and the score will increase by 1 1 1.

The score is initially 0 0 0. Both Turtle and Piggy want to maximize the score. Please help them to calculate the maximum score.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104). The description of the test cases follows.

The first line of each test case contains two integers l , r l, r l,r ( 1 ≤ l ≤ r ≤ 1 0 9 , 2 l ≤ r 1 \le l \le r \le 10^9, 2l \le r 1lr109,2lr) — The range where Turtle can choose the integer from.

Output

For each test case, output a single integer — the maximum score.

Example

Example

input
5
2 4
3 6
2 15
6 22
114514 1919810
output
2
2
3
4
20

Note

In the first test case, Turtle can choose an integer x x x, such that 2 ≤ x ≤ 4 2 \le x \le 4 2x4. He can choose x = 4 x = 4 x=4. Then Piggy can choose p = 2 p = 2 p=2 for 2 2 2 times. After that, x x x will become 1 1 1, and the score will be 2 2 2, which is maximized.

In the second test case, Turtle can choose an integer 3 ≤ x ≤ 6 3 \le x \le 6 3x6. He can choose x = 6 x = 6 x=6. Then Piggy can choose p = 2 p = 2 p=2, then choose p = 3 p = 3 p=3. After that, x x x will become 1 1 1, and the score will be 2 2 2, which is maximum.

In the third test case, Turtle can choose x = 12 x = 12 x=12.

In the fourth test case, Turtle can choose x = 16 x = 16 x=16.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int l, r;cin >> l >> r;int x = 0;while ((1ll << x) <= r) x ++;x --;cout << x << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

B. Turtle and an Infinite Sequence

Problem Statement

There is a sequence a 0 , a 1 , a 2 , … a_0, a_1, a_2, \ldots a0,a1,a2, of infinite length. Initially a i = i a_i = i ai=i for every non-negative integer i i i.

After every second, each element of the sequence will simultaneously change. a i a_i ai will change to a i − 1 ∣ a i ∣ a i + 1 a_{i - 1} \mid a_i \mid a_{i + 1} ai1aiai+1 for every positive integer i i i. a 0 a_0 a0 will change to a 0 ∣ a 1 a_0 \mid a_1 a0a1. Here, ∣ | denotes bitwise OR.

Turtle is asked to find the value of a n a_n an after m m m seconds. In particular, if m = 0 m = 0 m=0, then he needs to find the initial value of a n a_n an. He is tired of calculating so many values, so please help him!

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104). The description of the test cases follows.

The first line of each test case contains two integers n , m n, m n,m ( 0 ≤ n , m ≤ 1 0 9 0 \le n, m \le 10^9 0n,m109).

Output

For each test case, output a single integer — the value of a n a_n an after m m m seconds.

Example

Example

input
9
0 0
0 1
0 2
1 0
5 2
10 1
20 3
1145 14
19198 10
output
0
1
3
1
7
11
23
1279
19455

Note

After 1 1 1 second, [ a 0 , a 1 , a 2 , a 3 , a 4 , a 5 ] [a_0, a_1, a_2, a_3, a_4, a_5] [a0,a1,a2,a3,a4,a5] will become [ 1 , 3 , 3 , 7 , 7 , 7 ] [1, 3, 3, 7, 7, 7] [1,3,3,7,7,7].

After 2 2 2 seconds, [ a 0 , a 1 , a 2 , a 3 , a 4 , a 5 ] [a_0, a_1, a_2, a_3, a_4, a_5] [a0,a1,a2,a3,a4,a5] will become [ 3 , 3 , 7 , 7 , 7 , 7 ] [3, 3, 7, 7, 7, 7] [3,3,7,7,7,7].

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int n, m;cin >> n >> m;int l = max(0ll, n - m), r = n + m;if (l == r) cout << l << endl;for (int i = 30; i >= 0; i --)if ((r >> i & 1) && !(l >> i & 1)) {cout << (l | ((1ll << i + 1) - 1)) << endl;return;}
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

C. Turtle and an Incomplete Sequence

Problem Statement

Turtle was playing with a sequence a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an consisting of positive integers. Unfortunately, some of the integers went missing while playing.

Now the sequence becomes incomplete. There may exist an arbitrary number of indices i i i such that a i a_i ai becomes − 1 -1 1. Let the new sequence be a ′ a' a.

Turtle is sad. But Turtle remembers that for every integer i i i from 1 1 1 to n − 1 n - 1 n1, either a i = ⌊ a i + 1 2 ⌋ a_i = \left\lfloor\frac{a_{i + 1}}{2}\right\rfloor ai=2ai+1 or a i + 1 = ⌊ a i 2 ⌋ a_{i + 1} = \left\lfloor\frac{a_i}{2}\right\rfloor ai+1=2ai holds for the original sequence a a a.

Turtle wants you to help him complete the sequence. But sometimes Turtle makes mistakes, so you need to tell him if you can’t complete the sequence.

Formally, you need to find another sequence b 1 , b 2 , … , b n b_1, b_2, \ldots, b_n b1,b2,,bn consisting of positive integers such that:

  • For every integer i i i from 1 1 1 to n n n, if a i ′ ≠ − 1 a'_i \ne -1 ai=1, then b i = a i ′ b_i = a'_i bi=ai.
  • For every integer i i i from 1 1 1 to n − 1 n - 1 n1, either b i = ⌊ b i + 1 2 ⌋ b_i = \left\lfloor\frac{b_{i + 1}}{2}\right\rfloor bi=2bi+1 or b i + 1 = ⌊ b i 2 ⌋ b_{i + 1} = \left\lfloor\frac{b_i}{2}\right\rfloor bi+1=2bi holds.
  • For every integer i i i from 1 1 1 to n n n, 1 ≤ b i ≤ 1 0 9 1 \le b_i \le 10^9 1bi109.

If there is no sequence b 1 , b 2 , … , b n b_1, b_2, \ldots, b_n b1,b2,,bn that satisfies all of the conditions above, you need to report − 1 -1 1.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 5 1 \le t \le 10^5 1t105). The description of the test cases follows.

The first line of each test case contains a single integer n n n ( 2 ≤ n ≤ 2 ⋅ 1 0 5 2 \le n \le 2 \cdot 10^5 2n2105) — the length of the sequence.

The second line of each test case contains n n n integers a 1 ′ , a 2 ′ , … , a n ′ a'_1, a'_2, \ldots, a'_n a1,a2,,an ( a i ′ = − 1 a'_i = -1 ai=1 or 1 ≤ a i ′ ≤ 1 0 8 1 \le a'_i \le 10^8 1ai108) — the elements of the sequence a ′ a' a.

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, if there is no sequence b 1 , b 2 , … , b n b_1, b_2, \ldots, b_n b1,b2,,bn that satisfies all of the conditions, output a single integer − 1 -1 1.

Otherwise, output n n n integers b 1 , b 2 , … , b n b_1, b_2, \ldots, b_n b1,b2,,bn — the elements of the sequence b 1 , b 2 , … , b n b_1, b_2, \ldots, b_n b1,b2,,bn you find. The sequence should satisfy that 1 ≤ b i ≤ 1 0 9 1 \le b_i \le 10^9 1bi109 for every integer i i i from 1 1 1 to n n n. If there are multiple answers, print any of them.

Example

input
9
8
-1 -1 -1 2 -1 -1 1 -1
4
-1 -1 -1 -1
6
3 -1 -1 -1 9 -1
4
-1 5 -1 6
4
2 -1 -1 3
4
1 2 3 4
2
4 2
5
-1 3 -1 3 6
13
-1 -1 3 -1 -1 -1 -1 7 -1 -1 3 -1 -1
output
4 9 4 2 4 2 1 2
7 3 6 13
3 1 2 4 9 18
-1
-1
-1
4 2
6 3 1 3 6
3 1 3 1 3 7 3 7 3 1 3 1 3

Note

In the first test case, [ 4 , 2 , 1 , 2 , 1 , 2 , 1 , 3 ] [4, 2, 1, 2, 1, 2, 1, 3] [4,2,1,2,1,2,1,3] can also be the answer, while [ 4 , 2 , 5 , 10 , 5 , 2 , 1 , 3 ] [4, 2, 5, 10, 5, 2, 1, 3] [4,2,5,10,5,2,1,3] and [ 4 , 2 , 1 , 2 , 1 , 2 , 1 , 4 ] [4, 2, 1, 2, 1, 2, 1, 4] [4,2,1,2,1,2,1,4] cannot.

In the second test case, [ 1 , 2 , 5 , 2 ] [1, 2, 5, 2] [1,2,5,2] can also be the answer.

From the fourth to the sixth test cases, it can be shown that there is no answer, so you should output − 1 -1 1.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int n;cin >> n;std::vector<int> a(n + 1), b(n + 1, -1);bool cs = 1;for (int i = 1; i <= n; i ++) cin >> a[i], cs &= (a[i] == -1);if (cs) {for (int i = 1, j = 1; i <= n; i ++, j ^= 1)if (j) cout << 1 << " ";else cout << 2 << " ";cout << endl;return;}int lst = -1, pos, cnt = 0;for (int i = 1; i <= n; i ++)if (a[i] != -1) {if (lst != -1) {std::vector<int> avl;int tmp = lst;while (tmp) avl.emplace_back(tmp), tmp /= 2;bool flg = 0;for (int j = 0; j < avl.size(); j ++) {for (int x = 0; avl[j] * (1ll << x) <= a[i]; x ++) {tmp = a[i] - avl[j] * (1ll << x);if (tmp >= (1ll << x) || x + j > i - pos || (i - pos - x - j) % 2 != 0) continue;for (int k = pos, v = lst; k <= pos + j; k ++, v /= 2)b[k] = v;for (int k = pos + j + 1; k <= i - x; k += 2)b[k] = avl[j] * 2, b[k + 1] = avl[j];for (int k = i - x + 1, v = x - 1; k <= i; k ++, v --)if (tmp >> v & 1) b[k] = b[k - 1] * 2 + 1;else b[k] = b[k - 1] * 2;flg = 1;break;}if (flg) break;}}lst = a[i], pos = i, cnt ++;}if (cnt == 1) {for (int i = 1; i <= n; i ++)if (a[i] != -1)b[i] = a[i];}for (int i = 1; i <= n; i ++)if (a[i] != -1) {for (int j = i - 1, k = 1; j >= 1; j --, k ^= 1)if (k) b[j] = a[i] * 2;else b[j] = a[i];break;}for (int i = n; i >= 1; i --)if (a[i] != -1) {for (int j = i + 1, k = 1; j <= n; j ++, k ^= 1)if (k) b[j] = a[i] * 2;else b[j] = a[i];break;}for (int i = 1; i < n; i ++)if (b[i] <= 0 || b[i] / 2 != b[i + 1] && b[i + 1] / 2 != b[i]) {cout << -1 << endl;return;}for (int i = 1; i <= n; i ++)cout << b[i] << " ";cout << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

D. Turtle and Multiplication

Problem Statement

Turtle just learned how to multiply two integers in his math class, and he was very excited.

Then Piggy gave him an integer n n n, and asked him to construct a sequence a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an consisting of integers which satisfied the following conditions:

  • For all 1 ≤ i ≤ n 1 \le i \le n 1in, 1 ≤ a i ≤ 3 ⋅ 1 0 5 1 \le a_i \le 3 \cdot 10^5 1ai3105.
  • For all 1 ≤ i < j ≤ n − 1 1 \le i < j \le n - 1 1i<jn1, a i ⋅ a i + 1 ≠ a j ⋅ a j + 1 a_i \cdot a_{i + 1} \ne a_j \cdot a_{j + 1} aiai+1=ajaj+1.

Of all such sequences, Piggy asked Turtle to find the one with the minimum number of distinct elements.

Turtle definitely could not solve the problem, so please help him!

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104). The description of the test cases follows.

The first line of each test case contains a single integer n n n ( 2 ≤ n ≤ 1 0 6 2 \le n \le 10^6 2n106) — the length of the sequence a a a.

It is guaranteed that the sum of n n n over all test cases does not exceed 1 0 6 10^6 106.

Output

For each test case, output n n n integers a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an — the elements of the sequence a a a.

If there are multiple answers, print any of them.

Example

input
3
2
3
4
output
114514 114514
1 2 2
3 3 4 4

Note

In the third test case, a = [ 3 , 4 , 2 , 6 ] a = [3, 4, 2, 6] a=[3,4,2,6] violates the second condition since a 1 ⋅ a 2 = a 3 ⋅ a 4 a_1 \cdot a_2 = a_3 \cdot a_4 a1a2=a3a4. a = [ 2 , 3 , 4 , 4 ] a = [2, 3, 4, 4] a=[2,3,4,4] satisfy the conditions but its number of distinct elements isn’t minimum.

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 4e6 + 10;int n;
int h[N], e[N], ne[N], idx, vis[N];
std::vector<int> path, prm;
vector<int> Prime(int n) {std::vector<int> st(n + 1, 0), prm;for (int i = 2; i <= n; i ++) {if (!st[i]) prm.emplace_back(i);for (int j = 0; prm[j] * i <= n; j ++) {st[prm[j] * i] = true;if (i % prm[j] == 0) break;}}return prm;
}
void dfs(int u) {for (int &i = h[u]; ~i;) if (!vis[i]) {int j = e[i];vis[i] = vis[i ^ 1] = 1, i = ne[i], dfs(j);} elsei = ne[i];path.emplace_back(u);
}
void add(int a, int b) {e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}void solve() {cin >> n;int l = 1, r = n;while (l < r) {int mid = l + r >> 1;if ((mid & 1) && mid * (mid + 1) / 2 >= n - 1) r = mid;else if ((mid % 2 == 0) && mid * mid / 2 + 1 >= n - 1) r = mid;else l = mid + 1;}path.clear();for (int i = 0; i < r; i ++)for (int j = i; j < r; j ++)if ((r & 1) || j != i + 1 || i % 2 == 0)add(i, j), add(j, i);dfs(0), reverse(path.begin(), path.end());for (int i = 0; i < n; i ++)cout << prm[path[i]] << " ";cout << endl;for (int i = 0; i < r; i ++)h[i] = -1;for (int i = 0; i < idx; i ++) vis[i] = false;idx = 0;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);prm = Prime(100000);memset(h, -1, sizeof h);int dt;cin >> dt;while (dt -- )solve();return 0;
}


视频讲解

Codeforces Round 949 (Div. 2)(A ~ D 题讲解)


最后祝大家早日在这里插入图片描述

这篇关于Codeforces Round 949 (Div. 2 ABCD) 视频讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022562

相关文章

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

javascript fetch 用法讲解

《javascriptfetch用法讲解》fetch是一个现代化的JavaScriptAPI,用于发送网络请求并获取资源,它是浏览器提供的全局方法,可以替代传统的XMLHttpRequest,这篇... 目录1. 基本语法1.1 语法1.2 示例:简单 GET 请求2. Response 对象3. 配置请求

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

CSS引入方式和选择符的讲解和运用小结

《CSS引入方式和选择符的讲解和运用小结》CSS即层叠样式表,是一种用于描述网页文档(如HTML或XML)外观和格式的样式表语言,它主要用于将网页内容的呈现(外观)和结构(内容)分离,从而实现... 目录一、前言二、css 是什么三、CSS 引入方式1、行内样式2、内部样式表3、链入外部样式表四、CSS 选

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放