LCS时间复杂度O(NlogN) (LCS 转 LIS)

2024-06-01 21:58
文章标签 复杂度 时间 lis lcs nlogn

本文主要是介绍LCS时间复杂度O(NlogN) (LCS 转 LIS),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LCS(Longest Common Subsequences)最长公共子序列用一般的动态规划时间复杂度O(N^2), 但经过优化可以达到O(NlogN),下面是转载集训队某人的最长递增子序列解题报告。


 


  先回顾经典的O(n^2)的动态规划算法,设A[i]表示序列中的第i个数,F[i]表示从1到i这一段中以i结尾的最长上升子序列的长度,初始时设F[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:F[i] = max{1, F[j] + 1} (j = 1, 2, ..., i - 1, 且A[j] < A[i])。


  现在,我们仔细考虑计算F[i]时的情况。假设有两个元素A[x]和A[y],满足


   (1)x < y < i


          (2)A[x] < A[y] < A[i]


          (3)F[x] = F[y]


  此时,选择F[x]和选择F[y]都可以得到同样的F[i]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?


  很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[i-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。


  再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[i] = k的所有A[i]中的最小值。设D[k]记录这个值,即D[k] = min{A[i]} (F[i] = k)。


  注意到D[]的两个特点:


  (1) D[k]的值是在整个计算过程中是单调不上升的。
  (2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。


  利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[i]与D [len]。若A[i] > D[len],则将A[i]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[i];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[i]。令k = j + 1,则有D[j] < A[i] <= D[k],将A[i]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[i]。最后,len即为所要求的最长上升子序列的长度。


  在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!


  这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。


  


  最长公共子序列向最长递增子序列退化:


  设有序列A,B。记序列A中各个元素在B 中的位子(降序排列),然后按在A中的位置依次列出按后求A的最长递增子序列。


  例如:有A={a,b,a,c,x},B={b,a,a,b,c,a}则有a={6,3,2},b={4,1},c={5};x=/;(注意降序排列)


然后按A中次序排出{a(6,3,2),b(4,1),a(6,3,2),c(5),x()}={6,3,2,4,1,6,3,2,5};对此序列求最长递增子序列即可

这篇关于LCS时间复杂度O(NlogN) (LCS 转 LIS)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022216

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库