004 仿muduo实现高性能服务器组件_Buffer模块与Socket模块的实现

2024-06-01 07:28

本文主要是介绍004 仿muduo实现高性能服务器组件_Buffer模块与Socket模块的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

​🌈个人主页:Fan_558
🔥 系列专栏:仿muduo
🌹关注我💪🏻带你学更多知识

文章目录

  • 前言
    • Buffer模块
    • Socket模块
  • 小结

前言

这章将会向你介绍仿muduo高性能服务器组件的buffer模块与socket模块的实现

Buffer模块

在这里插入图片描述
设计思想
在这里插入图片描述
实现思想:

1、实现缓冲区得有一块内存空间,采用vector,string字符串的操作遇到’\0’就停止了,网络操作中什么样的数据都有,'\0’可能也有,string大部分的操作都是字符串操作,所以不太行

2、记录当前的读取数据位置与当前的写入数据位置,避免每次写入数据需要重新遍历数组找写入读入位置

3、考虑整体缓冲区空闲空间是否足够 (因为读位置也会向后偏移,前边有可能会有空间) 足够:则将数据(读位置开始)移动到起始位置即可
不够:扩容,从当前写位置开始扩容足够大小 数据一旦写入成功,当前写位置就要向后偏移

4、读取数据/写入数据
当前的读取/写入位置指向哪里,就从哪里开始读取/写入,前提是有数据可读/有空间可写,读取/写入完数据,读偏移/写偏移向后偏移

为了方便查阅
在这里插入图片描述
代码如下:

class Buffer{
private:std::vector<char> _buffer; //使用vector进行内存空间管理uint64_t _reader_idx; //读偏移uint64_t _writer_idx; //写偏移
public:Buffer():_reader_idx(0), _writer_idx(0) ,_buffer(BUFFER_SIZE) {}//获取_buffer起始元素的地址char* begin() {return &*_buffer.begin();}//获取当前写入起始地址(_buffer的空间起始地址,加上写偏移量char* WritePos() { return begin() + _writer_idx; }//获取当前读取起始地址(_buffer的空间起始地址,加上读偏移量char* ReadPos() { return begin() + _reader_idx; }//获取缓冲区末尾空闲空闲大小--写偏移之后的空闲空间uint64_t TailIdleSize() {return _buffer.size() - _writer_idx; }//获取缓冲区起始地址空闲空间大小--读偏移之前的空闲空间uint64_t HeadIdleSize() {return _reader_idx; }//获取可读数据大小uint64_t ReadAbleSize() {return _writer_idx - _reader_idx; }//读取数据后,将读偏移向后移动void MoveReadOffest(uint64_t len) {   //向后移动的大小,必须小于可读数据大小assert(len <= ReadAbleSize());_reader_idx += len; }//写入数据后,将写偏移向后移动void MoveWriteOffest(uint64_t len) { _writer_idx += len; }//确保可写空间足够(整体空闲空间够了就移动数据,否则就扩容)void EnsureWriteSpace(uint64_t len){//如果末尾空闲空间大小足够,直接返回if(len < TailIdleSize()) return;//如果不够,判断加上起始位置的空闲空间大小是否足够,够了就将可读数据移动到起始位置else if(len <= HeadIdleSize() + TailIdleSize()) {uint64_t sz = ReadAbleSize();   //可读数据大小_reader_idx = 0;    //更新读偏移_writer_idx = sz;   //更新写偏移return;}//总体空间不够,则需要扩容,不移动数据,直接给写偏移之后扩容足够空间即可else _buffer.resize(_writer_idx + len);}//写入数据void Write(const void* data, uint64_t len){//保证是否有足够空间EnsureWriteSpace(len);const char* d = (const char* )data;//拷贝数据到buffer当中std::copy(d, d + len, WritePos());}void WriteAndPush(const void* data, uint64_t len){Write(data, len);MoveWriteOffest(len);}//写入一个字符串void WriteString(const std::string &data){Write(data.c_str(), data.size());}//向buffer中写入一个字符串并向后移动writevoid WriteStringAndPush(const std::string &data){WriteString(data);MoveWriteOffest(data.size());}//把一个buffer类型的数据写入void WriteBuffer(Buffer &data){Write(data.ReadPos(), data.ReadAbleSize());}//向buffer中写入一个并向后移动writevoid WriteBufferAndPush(Buffer &data){WriteBuffer(data);MoveWriteOffest(data.ReadAbleSize());}//读取数据void Read(void* buf, uint64_t len){assert(len <= ReadAbleSize());//保持参数类型一致std::copy(ReadPos(), ReadPos() + len, (char*)buf);}void ReadAndPop(void* buf, uint64_t len){Read(buf, len);MoveReadOffest(len);}//把读取的数据当作一个string返回  std::string ReadAsString (uint64_t len){assert(len <= ReadAbleSize());std::string str;str.resize(len);//从缓冲区中读取长度为len的数据,并将其存储到字符串str的内存地址开始处的位置Read(&str[0], len);return str;}//读取一个string并向后移动(确保下一次不会重复读取)std::string ReadAsStringAndPop(uint64_t len){assert(len <= ReadAbleSize());std::string str = ReadAsString(len);MoveReadOffest(len);return str;}/*由于后面我们的高并发服务器会支持应用层协议的HTTP,而在HTTP协议中通常就是读取一行的数据,因为请求行和请求报头以及响应行和响应报头都是以\r\n作为分隔符的,都是一行行的数据所以我们的缓冲区也提供一个查找换行字符的位置*/char* FindCRLF(){//在可读数据范围内查找第一个出现的换行符的位置char* res = (char*)memchr(ReadPos(), '\n', ReadAbleSize());return res;}//获取一行数据std::string Getline(){char* pos = FindCRLF();if(pos == nullptr) return "";/*将换行符\n前的数据读出,+1:包括换行符(不然的话下一次再查找,换行符就在开头) */return ReadAsString(pos - ReadPos() + 1); }//读出一行数据后,将读偏移向后移std::string GetLineAndPop(){std::string str = Getline();MoveReadOffest(str.size());return str;}//清空缓冲区void clear(){//只需要将偏移量归零_writer_idx =  _reader_idx = 0;}
};

Socket模块

设计思想:
在这里插入图片描述
在该模块当中除了对socket套接字原有的操作进行封装,还提供了直接创建服务端和客户端连接的接口
为了方便查阅
在这里插入图片描述

代码如下

#define MAX_LISTEN 1024
class Socket{private:int _sockfd;public:Socket():_sockfd(-1){}Socket(int fd):_sockfd(fd){}//关闭套接字~Socket() { Close(); }int Fd(){return _sockfd;}//创建套接字bool Create(){//int socket(int domain, int type, int protocol)  AF_INET: 表示使用ipv4地址族 SOCK_STREM: 表示创建面向连接的套接字类(TCP) IPPROTO_TCP: 表示使用TCP协议_sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);if(_sockfd < 0){ERR_LOG("CREATE SOCKET FAILEDQ!");return false;}return true;}//绑定地址信息bool Bind(const std::string &ip, uint16_t port){struct sockaddr_in addr;addr.sin_family = AF_INET;      //ipv4地址域类型addr.sin_port = htons(port);    //将端口号通过主机转网络字节序addr.sin_addr.s_addr = inet_addr(ip.c_str());   //将IP地址转化为网络字节序的32位ipv4地址socklen_t len = sizeof(struct sockaddr_in);//int bind(int socket, const struct sockaddr *addr. socklen_t addrlen);int ret = bind(_sockfd, (struct sockaddr*)&addr, len);if(ret < 0){ERR_LOG("BIND ADDRESS FAILEDQ!");return false;}return true;}//开始监听bool Listen(int backlog = MAX_LISTEN){int ret = listen(_sockfd, backlog);if(ret < 0){ERR_LOG("SOCKET LISTEN FAILED!");return false;}return true;}//向服务器发起连接(传入服务器的ip和端口信息)bool Connect(const std::string &ip, uint16_t port){//int connect(int sockfd, const struct sockaddr* addr, socklen_t addrlen);struct sockaddr_in addr;addr.sin_family = AF_INET;addr.sin_port = htons(port);addr.sin_addr.s_addr = inet_addr(ip.c_str());socklen_t len = sizeof(struct sockaddr_in);int ret = connect(_sockfd, (struct sockaddr*)&addr, len);if(ret < 0){ERR_LOG("CONNECT SERVER FAILEDQ!");return false;}return true;}//监听有新连接后,获取新连接(返回一个文件描述符)int Accept()    {int newfd = accept(_sockfd, nullptr, nullptr);if(newfd < 0){ERR_LOG("SOCKET ACCEPT FAILED!");return -1;}return newfd;}//接收数据(ssize_t为有符号整数,size_t无符号整数,默认0为阻塞操作)ssize_t Recv(void* buf, size_t len, int flag = 0){ssize_t ret = recv(_sockfd, buf, len, flag);if(ret <= 0){//EAGAIN 当前socket的接收缓冲区中没有数据了,在非阻塞的情况下才会有这个错误//EINTR 当前socket的阻塞等待被信号打断了if(errno == EAGAIN || errno == EINTR)return 0;else{ERR_LOG("SOCKET RECV FAILED");return -1;}}return ret; //返回实际接收的数据长度}ssize_t NonBlockRecv(void* buf, size_t len){return Recv(buf, len, MSG_DONTWAIT); // MSG_DONTWAIT 表示当前接收为非阻塞}//发送数据ssize_t Send(const void* buf, size_t len, int flag = 0){ssize_t ret = send(_sockfd, buf, len, flag);if(ret < 0){if(errno == EAGAIN || errno == EINTR){return 0;}ERR_LOG("SOCKET RECV FAILED");return -1;}return ret; //返回实际发送的数据长度}ssize_t NonBlockSend(void* buf, size_t len){Send(buf, len, MSG_DONTWAIT); // MSG_DONTWAIT 表示当前接收为非阻塞}//关闭套接字void Close(){if(_sockfd != -1){close(_sockfd);_sockfd = -1;}}//创建一个服务端连接bool CreateServer(uint16_t port, const std::string &ip = "0.0.0.0", bool block_flag = false){if(Create()==false) return false;//是否启动非阻塞if(block_flag) NonBlock();if(Bind(ip, port) == false) return false;if(Listen() == false) return false;ReuseAddress();return true;}//创建一个客户端连接bool CreateClient(uint16_t port, const std::string &ip){if(Create() == false) return false;if(Connect(ip, port) == false) return false;return true;}//设置套接字选项---开启地址端口重用void ReuseAddress(){// int setsockopt(int fd, int leve, int optname, void *val, int vallen)int val = 1;setsockopt(_sockfd, SOL_SOCKET, SO_REUSEADDR, (void*)&val, sizeof(int));val = 1;setsockopt(_sockfd, SOL_SOCKET, SO_REUSEPORT, (void*)&val, sizeof(int));}//设置套接字阻塞属性---设置为非阻塞void NonBlock(){//int fcntl(int fd, int cmd, ... /* arg */ );int flag = fcntl(_sockfd, F_GETFL, 0);fcntl(_sockfd, F_SETFL, flag | O_NONBLOCK);}
};

小结

今日的项目分享就到这里啦,下一篇将会向你介绍Channel与Poller模块

这篇关于004 仿muduo实现高性能服务器组件_Buffer模块与Socket模块的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1020351

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter