特征工程技巧——OneHot编码

2024-05-31 20:12

本文主要是介绍特征工程技巧——OneHot编码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们以Kaggle比赛里面的一个数据集跟一个公开代码为例去解释我们的OneHot编码。

简单来说,独热编码是一种将类别型变量转换为二进制表示的方法,其中每个类别被表示为一个向量,向量的长度等于类别的数量,其中只有一个元素为1,其余元素为0。例如,如果有三个类别(A、B、C),则独热编码可能如下所示:

  • A: [1, 0, 0]
  • B: [0, 1, 0]
  • C: [0, 0, 1]

独热编码的主要优点是它将类别之间的关系消除,使得数据更适合用于机器学习算法,因为它避免了算法误认为类别之间存在顺序或距离关系。

训练集

测试集

 1、导入我们相应的包

!pip install rdkit

RDKit是一个开源的化学信息学工具包,用于分子建模和化学信息处理。它提供了一系列功能强大的工具,可以用于分子描述符计算、药物设计、虚拟筛选、化学信息的可视化等任务。

!pip install duckdb

DuckDB是一个嵌入式的SQL数据库管理系统(DBMS),旨在提供高性能的数据查询和分析。它主要用于处理大规模数据集和分析任务,并且可以与现有的数据科学工具和应用程序集成。

2、数据准备

import duckdb
import pandas as pdtrain_path = '/kaggle/input/leash-predict-chemical-bindings/train.parquet'
test_path = '/kaggle/input/leash-predict-chemical-bindings/test.parquet'con = duckdb.connect()df = con.query(f"""(SELECT *FROM parquet_scan('{train_path}')WHERE binds = 0ORDER BY random()LIMIT 30000)UNION ALL(SELECT *FROM parquet_scan('{train_path}')WHERE binds = 1ORDER BY random()LIMIT 30000)""").df()con.close()
  • 这部分代码连接到了一个DuckDB数据库,并从训练数据的parquet文件中获取数据。它选择了相等数量的绑定(binds=1)和非绑定(binds=0)的样本,以避免模型对某一类别的偏好。
  • 查询语句将绑定为0和绑定为1的样本合并到一个DataFrame中,每个类别各30000个样本。最终的DataFrame包含了分子数据以及其对应的标签。
  • con.query() 用于执行 SQL 查询,该查询从指定的 .parquet 文件中检索数据。
  • con.close()是用于关闭与数据库的连接,它的作用是释放资源并断开与数据库的通信连接。在使用数据库时,连接是有限资源,因此在不再需要连接时应该显式地关闭它,以释放资源并避免资源泄露。

2、特征预处理

  • from rdkit import Chem
    from rdkit.Chem import AllChem
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import average_precision_score
    from sklearn.preprocessing import OneHotEncoder
    import xgboost as xgb# Convert SMILES to RDKit molecules
    df['molecule'] = df['molecule_smiles'].apply(Chem.MolFromSmiles)# Generate ECFPs
    def generate_ecfp(molecule, radius=2, bits=1024):if molecule is None:return Nonereturn list(AllChem.GetMorganFingerprintAsBitVect(molecule, radius, nBits=bits))df['ecfp'] = df['molecule'].apply(generate_ecfp)
  • 这部分代码使用RDKit库将SMILES字符串转换为RDKit的分子对象,并定义了一个函数generate_ecfp来生成ECFP特征

  • generate_ecfp函数计算了每个分子的ECFP特征,并将其作为新的特征列添加到DataFrame中。

3、模型训练

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split# One-hot encode the protein_name
onehot_encoder = OneHotEncoder(sparse_output=False)
protein_onehot = onehot_encoder.fit_transform(df['protein_name'].values.reshape(-1, 1))# Combine ECFPs and one-hot encoded protein_name
X = [ecfp + protein for ecfp, protein in zip(df['ecfp'].tolist(), protein_onehot.tolist())]
y = df['binds'].tolist()# Split the data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Create and train the random forest model
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
  • 这部分代码使用随机森林分类器对数据进行训练。首先,使用 fit_transform 方法对DataFrame中的 'protein_name' 列进行编码,并将结果存储在 protein_onehot 中。对蛋白质名称进行了独热编码.values.reshape(-1, 1)这部分代码将选定的列中的数据转换为 NumPy 数组,并对其进行重塑,将其变成一个列向量。.values 将 DataFrame 列转换为 NumPy 数组,.reshape(-1, 1) 将数组重塑为一个列向量,其中 -1 表示未知的行数,而 1 表示只有一列。
  • 通过使用列表推导式,将每个ECFPs特征向量和对应的独热编码蛋白质名称逐一组合,并将结果存储在 X 中,作为模型的输入特征。
  • 训练数据被划分为训练集和验证集,并使用随机森林模型进行训练。
  • random_state=42 用于设置随机种子,保证划分的结果可以重现。

4、模型评估

from sklearn.metrics import average_precision_score# Make predictions on the test set
y_pred_proba = rf_model.predict_proba(X_test)[:, 1]  # Probability of the positive class# Calculate the mean average precision
map_score = average_precision_score(y_test, y_pred_proba)
print(f"Mean Average Precision (mAP): {map_score:.2f}")
  • 这部分代码使用训练好的随机森林模型在测试集上进行预测,得到了每个样本属于正类的概率,并将结果存储在 y_pred_proba 中。
  • 这部分代码用测试集上的预测结果评估了模型的性能。使用平均精度(Average Precision)评估模型在验证集上的性能。

5、测试预测

import os# Process the test.parquet file chunk by chunk
test_file = '/kaggle/input/leash-predict-chemical-bindings/test.csv'
output_file = 'submission.csv'# Read the test.parquet file into a pandas DataFrame
for df_test in pd.read_csv(test_file, chunksize=100000):# Generate ECFPs for the molecule_smilesdf_test['molecule'] = df_test['molecule_smiles'].apply(Chem.MolFromSmiles)df_test['ecfp'] = df_test['molecule'].apply(generate_ecfp)# One-hot encode the protein_nameprotein_onehot = onehot_encoder.transform(df_test['protein_name'].values.reshape(-1, 1))# Combine ECFPs and one-hot encoded protein_nameX_test = [ecfp + protein for ecfp, protein in zip(df_test['ecfp'].tolist(), protein_onehot.tolist())]# Predict the probabilitiesprobabilities = rf_model.predict_proba(X_test)[:, 1]# Create a DataFrame with 'id' and 'probability' columnsoutput_df = pd.DataFrame({'id': df_test['id'], 'binds': probabilities})# Save the output DataFrame to a CSV fileoutput_df.to_csv(output_file, index=False, mode='a', header=not os.path.exists(output_file))

这部分代码用训练好的随机森林模型对测试数据进行预测,并将结果保存到CSV文件中。

代码地址:Leash Tutorial - ECFPs and Random Forest | Kaggle

这篇关于特征工程技巧——OneHot编码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1018935

相关文章

Mac备忘录怎么导出/备份和云同步? Mac备忘录使用技巧

《Mac备忘录怎么导出/备份和云同步?Mac备忘录使用技巧》备忘录作为iOS里简单而又不可或缺的一个系统应用,上手容易,可以满足我们日常生活中各种记录的需求,今天我们就来看看Mac备忘录的导出、... 「备忘录」是 MAC 上的一款常用应用,它可以帮助我们捕捉灵感、记录待办事项或保存重要信息。为了便于在不同

电脑蓝牙连不上怎么办? 5 招教你轻松修复Mac蓝牙连接问题的技巧

《电脑蓝牙连不上怎么办?5招教你轻松修复Mac蓝牙连接问题的技巧》蓝牙连接问题是一些Mac用户经常遇到的常见问题之一,在本文章中,我们将提供一些有用的提示和技巧,帮助您解决可能出现的蓝牙连接问... 蓝牙作为一种流行的无线技术,已经成为我们连接各种设备的重要工具。在 MAC 上,你可以根据自己的需求,轻松地

Python处理大量Excel文件的十个技巧分享

《Python处理大量Excel文件的十个技巧分享》每天被大量Excel文件折磨的你看过来!这是一份Python程序员整理的实用技巧,不说废话,直接上干货,文章通过代码示例讲解的非常详细,需要的朋友可... 目录一、批量读取多个Excel文件二、选择性读取工作表和列三、自动调整格式和样式四、智能数据清洗五、

如何关闭Mac的Safari通知? 3招教你关闭Safari浏览器网站通知的技巧

《如何关闭Mac的Safari通知?3招教你关闭Safari浏览器网站通知的技巧》当我们在使用Mac电脑专注做一件事情的时候,总是会被一些消息推送通知所打扰,这时候,我们就希望关闭这些烦人的Mac通... Safari 浏览器的「通知」功能本意是为了方便用户及时获取最新资讯,但很容易被一些网站滥用,导致我们

电脑提示Winmm.dll缺失怎么办? Winmm.dll文件丢失的多种修复技巧

《电脑提示Winmm.dll缺失怎么办?Winmm.dll文件丢失的多种修复技巧》有时电脑会出现无法启动程序,因为计算机中丢失winmm.dll的情况,其实,winmm.dll丢失是一个比较常见的问... 在大部分情况下出现我们运行或安装软件,游戏出现提示丢失某些DLL文件或OCX文件的原因可能是原始安装包

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

ubuntu16.04如何部署dify? 在Linux上安装部署Dify的技巧

《ubuntu16.04如何部署dify?在Linux上安装部署Dify的技巧》随着云计算和容器技术的快速发展,Docker已经成为现代软件开发和部署的重要工具之一,Dify作为一款优秀的云原生应用... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。它

MyBatisX逆向工程的实现示例

《MyBatisX逆向工程的实现示例》本文主要介绍了MyBatisX逆向工程的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录逆向工程准备好数据库、表安装MyBATisX插件项目连接数据库引入依赖pom.XML生成实体类、

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

Python中Flask模板的使用与高级技巧详解

《Python中Flask模板的使用与高级技巧详解》在Web开发中,直接将HTML代码写在Python文件中会导致诸多问题,Flask内置了Jinja2模板引擎,完美解决了这些问题,下面我们就来看看F... 目录一、模板渲染基础1.1 为什么需要模板引擎1.2 第一个模板渲染示例1.3 模板渲染原理二、模板