特征工程技巧——OneHot编码

2024-05-31 20:12

本文主要是介绍特征工程技巧——OneHot编码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们以Kaggle比赛里面的一个数据集跟一个公开代码为例去解释我们的OneHot编码。

简单来说,独热编码是一种将类别型变量转换为二进制表示的方法,其中每个类别被表示为一个向量,向量的长度等于类别的数量,其中只有一个元素为1,其余元素为0。例如,如果有三个类别(A、B、C),则独热编码可能如下所示:

  • A: [1, 0, 0]
  • B: [0, 1, 0]
  • C: [0, 0, 1]

独热编码的主要优点是它将类别之间的关系消除,使得数据更适合用于机器学习算法,因为它避免了算法误认为类别之间存在顺序或距离关系。

训练集

测试集

 1、导入我们相应的包

!pip install rdkit

RDKit是一个开源的化学信息学工具包,用于分子建模和化学信息处理。它提供了一系列功能强大的工具,可以用于分子描述符计算、药物设计、虚拟筛选、化学信息的可视化等任务。

!pip install duckdb

DuckDB是一个嵌入式的SQL数据库管理系统(DBMS),旨在提供高性能的数据查询和分析。它主要用于处理大规模数据集和分析任务,并且可以与现有的数据科学工具和应用程序集成。

2、数据准备

import duckdb
import pandas as pdtrain_path = '/kaggle/input/leash-predict-chemical-bindings/train.parquet'
test_path = '/kaggle/input/leash-predict-chemical-bindings/test.parquet'con = duckdb.connect()df = con.query(f"""(SELECT *FROM parquet_scan('{train_path}')WHERE binds = 0ORDER BY random()LIMIT 30000)UNION ALL(SELECT *FROM parquet_scan('{train_path}')WHERE binds = 1ORDER BY random()LIMIT 30000)""").df()con.close()
  • 这部分代码连接到了一个DuckDB数据库,并从训练数据的parquet文件中获取数据。它选择了相等数量的绑定(binds=1)和非绑定(binds=0)的样本,以避免模型对某一类别的偏好。
  • 查询语句将绑定为0和绑定为1的样本合并到一个DataFrame中,每个类别各30000个样本。最终的DataFrame包含了分子数据以及其对应的标签。
  • con.query() 用于执行 SQL 查询,该查询从指定的 .parquet 文件中检索数据。
  • con.close()是用于关闭与数据库的连接,它的作用是释放资源并断开与数据库的通信连接。在使用数据库时,连接是有限资源,因此在不再需要连接时应该显式地关闭它,以释放资源并避免资源泄露。

2、特征预处理

  • from rdkit import Chem
    from rdkit.Chem import AllChem
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import average_precision_score
    from sklearn.preprocessing import OneHotEncoder
    import xgboost as xgb# Convert SMILES to RDKit molecules
    df['molecule'] = df['molecule_smiles'].apply(Chem.MolFromSmiles)# Generate ECFPs
    def generate_ecfp(molecule, radius=2, bits=1024):if molecule is None:return Nonereturn list(AllChem.GetMorganFingerprintAsBitVect(molecule, radius, nBits=bits))df['ecfp'] = df['molecule'].apply(generate_ecfp)
  • 这部分代码使用RDKit库将SMILES字符串转换为RDKit的分子对象,并定义了一个函数generate_ecfp来生成ECFP特征

  • generate_ecfp函数计算了每个分子的ECFP特征,并将其作为新的特征列添加到DataFrame中。

3、模型训练

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split# One-hot encode the protein_name
onehot_encoder = OneHotEncoder(sparse_output=False)
protein_onehot = onehot_encoder.fit_transform(df['protein_name'].values.reshape(-1, 1))# Combine ECFPs and one-hot encoded protein_name
X = [ecfp + protein for ecfp, protein in zip(df['ecfp'].tolist(), protein_onehot.tolist())]
y = df['binds'].tolist()# Split the data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Create and train the random forest model
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
  • 这部分代码使用随机森林分类器对数据进行训练。首先,使用 fit_transform 方法对DataFrame中的 'protein_name' 列进行编码,并将结果存储在 protein_onehot 中。对蛋白质名称进行了独热编码.values.reshape(-1, 1)这部分代码将选定的列中的数据转换为 NumPy 数组,并对其进行重塑,将其变成一个列向量。.values 将 DataFrame 列转换为 NumPy 数组,.reshape(-1, 1) 将数组重塑为一个列向量,其中 -1 表示未知的行数,而 1 表示只有一列。
  • 通过使用列表推导式,将每个ECFPs特征向量和对应的独热编码蛋白质名称逐一组合,并将结果存储在 X 中,作为模型的输入特征。
  • 训练数据被划分为训练集和验证集,并使用随机森林模型进行训练。
  • random_state=42 用于设置随机种子,保证划分的结果可以重现。

4、模型评估

from sklearn.metrics import average_precision_score# Make predictions on the test set
y_pred_proba = rf_model.predict_proba(X_test)[:, 1]  # Probability of the positive class# Calculate the mean average precision
map_score = average_precision_score(y_test, y_pred_proba)
print(f"Mean Average Precision (mAP): {map_score:.2f}")
  • 这部分代码使用训练好的随机森林模型在测试集上进行预测,得到了每个样本属于正类的概率,并将结果存储在 y_pred_proba 中。
  • 这部分代码用测试集上的预测结果评估了模型的性能。使用平均精度(Average Precision)评估模型在验证集上的性能。

5、测试预测

import os# Process the test.parquet file chunk by chunk
test_file = '/kaggle/input/leash-predict-chemical-bindings/test.csv'
output_file = 'submission.csv'# Read the test.parquet file into a pandas DataFrame
for df_test in pd.read_csv(test_file, chunksize=100000):# Generate ECFPs for the molecule_smilesdf_test['molecule'] = df_test['molecule_smiles'].apply(Chem.MolFromSmiles)df_test['ecfp'] = df_test['molecule'].apply(generate_ecfp)# One-hot encode the protein_nameprotein_onehot = onehot_encoder.transform(df_test['protein_name'].values.reshape(-1, 1))# Combine ECFPs and one-hot encoded protein_nameX_test = [ecfp + protein for ecfp, protein in zip(df_test['ecfp'].tolist(), protein_onehot.tolist())]# Predict the probabilitiesprobabilities = rf_model.predict_proba(X_test)[:, 1]# Create a DataFrame with 'id' and 'probability' columnsoutput_df = pd.DataFrame({'id': df_test['id'], 'binds': probabilities})# Save the output DataFrame to a CSV fileoutput_df.to_csv(output_file, index=False, mode='a', header=not os.path.exists(output_file))

这部分代码用训练好的随机森林模型对测试数据进行预测,并将结果保存到CSV文件中。

代码地址:Leash Tutorial - ECFPs and Random Forest | Kaggle

这篇关于特征工程技巧——OneHot编码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018935

相关文章

90%的人第一步就错了! 顺利登录wifi路由器后台的技巧

《90%的人第一步就错了!顺利登录wifi路由器后台的技巧》登录Wi-Fi路由器,其实就是进入它的后台管理页面,很多朋友不知道该怎么进入路由器后台设置,感兴趣的朋友可以花3分钟了解一下... 你是不是也遇到过这种情况:家里网速突然变慢、想改WiFi密码却不知道从哪进路由器、新装宽带后完全不知道怎么设置?别慌

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

录音功能在哪里? 电脑手机等设备打开录音功能的技巧

《录音功能在哪里?电脑手机等设备打开录音功能的技巧》很多时候我们需要使用录音功能,电脑和手机这些常用设备怎么使用录音功能呢?下面我们就来看看详细的教程... 我们在会议讨论、采访记录、课堂学习、灵感创作、法律取证、重要对话时,都可能有录音需求,便于留存关键信息。下面分享一下如何在电脑端和手机端上找到录音功能

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支