论文笔记 | Attention Is All Y ou Need for Chinese Word Segmentation

2024-05-31 12:58

本文主要是介绍论文笔记 | Attention Is All Y ou Need for Chinese Word Segmentation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述


作者:景
单位:燕山大学


论文来源:EMNLP2020
代码地址

关于分词任务

  中文分词(CWS)是在句子中划分单词边界的任务,对于中文和许多其他东亚语言来说,这是一项基本和必要的任务——对于中文来说,进行交流的基本单位是汉字,每个汉字均有各自的意思,且当不同的汉字进行组合后还会产生新的含义。英语中词的最基本单位是字母(letter),但英语日常使用的基本单位是词(word),词汇之间的关联组合性相较中文较弱。在实际应用场景中,如果按照英文的使用习惯对中文进行“按字拆分”,就会割裂中文词汇内的语义联系。

任务定义

  给定一段中文序列[x1,…,xn],用标签0/1来标记序列中俩俩字符之间的间隙(gap),如果间隙前后的字符(如x5、x6)属于不同的词汇,即判定该处间隙属于分词符,用标签1标记该间隙,反之则用标签0表示。最后根据标签值将序列进行划分即可完成分词任务。

论文概述

  • 提出了一种新型的Transformer变体——高斯掩码定向Transformer编码器(Gaussian-masked Directional Transformer encoder,GD)
  • 提出了一种新的中文分词模型,该模型基于GD Transformer设计,但其内部仅仅堆叠了注意力机制模块,没有添加前馈神经网络
  • 作者证明在使用GD作为编码器之后,单个字符特征加上贪婪分割算法可以支持产生强大的性能,并刷新了当前的sota。

方法

模型的总结构图如下所示。
123

1.高斯掩码定向Transformer

  作者提出的GD Transformer与原版的Transformer相比,做了两大改进:
  1.用三种平行的Encoder代替了原transformer中的Encoder
  2.采用高斯掩码定向注意力机制代替了标准的多头自注意力机制

Encoder部分

在这里插入图片描述

  如上图所示,每层共有三个彼此平行的编码器:前向编码器、中心编码器、 后向编码器;前、后向编码器用于捕捉gap前边、后边的信息,中心编码器与原Transformer编码器一样,可以同时捕捉gap前后文的信息。

For the forward encoder, we forcibly set all values inside the attention matrix representing the character pair relation after the concerned character as 0 so that the encoder can focus on the forward characters.

  对于前向编码器,作者强制将gap之后的关系矩阵内的所有值设置为0,进行一个掩盖的操作,以便编码器可以关注前向字符。后向编码器的设置与前向编码器相似,不过掩盖的是gap之前的位置。
  编码器的输出结果为rf、rb、rc,得到图示的 v b v^b vb v f v^f vf
v b = r b + r c v f = r f + r c v^b=r^b+r^c\\ v^f = r^f+r^c vb=rb+rcvf=rf+rc

GD多头注意力机制

在这里插入图片描述

我们知道,Transformer中Attention的计算公式如式1所示,
A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V (1) Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt {d_k}})V \tag{1} Attention(Q,K,V)=softmax(dk QKT)V(1)

  与缩放的点积注意力不同,高斯掩码定向注意力期望关注每个位置的相邻字符,并将字符之间的局部性关系作为固定的高斯权重进行关注。作者假设高斯权重只依赖于字符之间的距离。因此引入高斯权重矩阵 G = ( g i j )

这篇关于论文笔记 | Attention Is All Y ou Need for Chinese Word Segmentation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1017989

相关文章

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

Python实现自动化删除Word文档超链接的实用技巧

《Python实现自动化删除Word文档超链接的实用技巧》在日常工作中,我们经常需要处理各种Word文档,本文将深入探讨如何利用Python,特别是借助一个功能强大的库,高效移除Word文档中的超链接... 目录为什么需要移除Word文档超链接准备工作:环境搭建与库安装核心实现:使用python移除超链接的

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方