光栅幅值细分原理与实现

2024-05-31 01:36

本文主要是介绍光栅幅值细分原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍光栅幅值细分原理与实现。

光栅是工业测量领域中常见的传感器,如下图。主要厂家有雷尼绍,海德汉,配套的光栅读数头有模拟信号的,也有直接细分输出数字脉冲的,本文的细分针对模拟信号,即有正弦信号,余弦信号,Index信号输出的光栅读数头。光栅细分方法有很多(如锁相倍频细分法,幅值细分法等),本文介绍常用的幅值细分法。

1.细分原理

由于常见的光栅栅距为20um,40um,对应一个正弦或余弦周期输出,分辨率太低,因此需要采用相应的细分方法,将分辨率调整到合适的值,如采用1000细分,可将栅距为20um的光栅尺,分辨率调高到20/1000um=0.02um。
幅值细分法是根据莫尔信号幅值和相位的对应关系,通过对幅值大小的分割判断来实现莫尔信号的相位细分。传统的幅值细分法利用电压比较器组将幅值信号与参考电压信号比较来输出细分脉冲,由于光栅传感器输出的莫尔信号波形近似正弦信号,如下图,在不同的相位处所对应的灵敏度不同,当信号幅值接近峰值时需要较大的相位变化才能引起微小的幅值变化,因此容易造成细分误差。

为了克服莫尔信号灵敏度不等造成细分误差的缺点,通常采用构造新函数的方法,以提高信号的线性度,这里采用正切函数构造的方法。

1)正切函数构造原理

设光栅传感器输出的2路莫尔信号为:

\left\{\begin{matrix} u_{1}=A\cdot \sin \theta \\ u_{2}=A\cdot \cos \theta \end{matrix}\right.

\left [ 0,\frac{\pi }{2} \right ]区间来考察,可构造如下正切函数:

u_{3}= \left\{\begin{matrix} \tan \theta =\frac{\left | A\cdot \sin \theta \right | }{\left | A\cdot \cos \theta \right | }, \left | A\cdot \sin \theta \right | \leq \left | A\cdot \cos \theta \right | \\ \cot \theta =\frac{\left | A\cdot \cos \theta \right | }{\left | A\cdot \sin \theta \right | }, \left | A\cdot \sin \theta \right | \geq \left | A\cdot \cos \theta \right | \end{matrix}\right.

其中,\theta为光栅信号相位

而以\left [ \frac{\pi }{2}, \pi\right ]区间来考察,原来在\left [ 0,\frac{\pi }{2} \right ]区间的A\cdot \sin \theta在此区间就变成了A\cdot \cos \theta(取绝对值的原因),而原来在\left [ 0,\frac{\pi }{2} \right ]区间的A\cdot \cos \theta在此区间就变成了A\cdot \sin \theta(取绝对值的原因),仍然可以按上述u_{3}构造正切函数。其他区间依次类推。

构造的正切函数u_{3}波形如下图。

新函数u_{3}近似三角波,是一个周期函数(周期为\frac{\pi }{2}),包含一半正切函数波形,一半余切函数波形。采用这种方法的线性度高,且不需要确定莫尔信号的峰值大小,不易受信号衰减的影响,因此,幅值细分法得到了广泛的应用。

2)区间划分

由于不同的区间采用的函数是不一样的,为了便于信号处理,将整个周期划分为8个区间,当前信号所处的区间可由u_{1}u_{2}极性,u_{1}u_{2}大小关系来进行确定。区间划分如下表。

区间u_{1}极性u_{2}极性\left |u_{1} \right |\left |u_{2} \right |大小比较
1++\left |u_{1} \right |< \left |u_{2} \right |
2++\left |u_{1} \right |> \left |u_{2} \right |
3+-\left |u_{1} \right |> \left |u_{2} \right |
4+-\left |u_{1} \right |< \left |u_{2} \right |
5--\left |u_{1} \right |< \left |u_{2} \right |
6--\left |u_{1} \right |> \left |u_{2} \right |
7-+\left |u_{1} \right |> \left |u_{2} \right |
8-+\left |u_{1} \right |< \left |u_{2} \right |

3)区间细分数确定

设N为一个周期内总细分数。为了方便计算,我们将8个区间的计算统一映射到第1个区间,得到在不同区间的细分数值,如下表。

区间细分数
1\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
2\frac{N}{4}-\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
3\frac{N}{4}+\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
4\frac{N}{2}-\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
5\frac{N}{2}+\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
6\frac{3\cdot N}{4}-\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
7\frac{3\cdot N}{4}+\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
8N-\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }

其中,

a)u_{1}u_{2}为各自区间的电压值

b)区间可由“2)区间划分”确定

2.细分实现

清楚原理,细分实现就比较简单了,细分实现框图如下图。

总的流程如下:

1)FPGA/DSP通过同步高速A/D采样,获取sin信号和cos信号幅值

2)FPGA/DSP通过区间划分表获取当前区间

3)FPGA/DSP通过当前区间,计算当前细分数

4)当信号经过一个周期后,总细分数加1

5)输出当前细分值

3.细分误差来源

造成细分误差的来源有很多,主要有以下几种:

1)直流误差。光栅输出正弦信号和余弦信号直流偏置不一样,造成A/D采样幅值不一样,从而造成计算相位时的误差。

2)幅值误差。光栅输出正弦信号和余弦信号幅值不一样,造成A/D采样幅值不一样,从而造成计算相位时的误差。

3)正交误差。光栅输出正弦信号和余弦信号有相位差,在计算相位时出现误差,可以通过示波器的李沙育图的圆度来判断。

可以通过误差补偿的方法减小误差,误差补偿顺序应遵循先进行直流补偿,再进行幅值补偿,最后进行正交补偿。

本文介绍了光栅幅值细分原理与实现。

这篇关于光栅幅值细分原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1017206

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、