光栅幅值细分原理与实现

2024-05-31 01:36

本文主要是介绍光栅幅值细分原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍光栅幅值细分原理与实现。

光栅是工业测量领域中常见的传感器,如下图。主要厂家有雷尼绍,海德汉,配套的光栅读数头有模拟信号的,也有直接细分输出数字脉冲的,本文的细分针对模拟信号,即有正弦信号,余弦信号,Index信号输出的光栅读数头。光栅细分方法有很多(如锁相倍频细分法,幅值细分法等),本文介绍常用的幅值细分法。

1.细分原理

由于常见的光栅栅距为20um,40um,对应一个正弦或余弦周期输出,分辨率太低,因此需要采用相应的细分方法,将分辨率调整到合适的值,如采用1000细分,可将栅距为20um的光栅尺,分辨率调高到20/1000um=0.02um。
幅值细分法是根据莫尔信号幅值和相位的对应关系,通过对幅值大小的分割判断来实现莫尔信号的相位细分。传统的幅值细分法利用电压比较器组将幅值信号与参考电压信号比较来输出细分脉冲,由于光栅传感器输出的莫尔信号波形近似正弦信号,如下图,在不同的相位处所对应的灵敏度不同,当信号幅值接近峰值时需要较大的相位变化才能引起微小的幅值变化,因此容易造成细分误差。

为了克服莫尔信号灵敏度不等造成细分误差的缺点,通常采用构造新函数的方法,以提高信号的线性度,这里采用正切函数构造的方法。

1)正切函数构造原理

设光栅传感器输出的2路莫尔信号为:

\left\{\begin{matrix} u_{1}=A\cdot \sin \theta \\ u_{2}=A\cdot \cos \theta \end{matrix}\right.

\left [ 0,\frac{\pi }{2} \right ]区间来考察,可构造如下正切函数:

u_{3}= \left\{\begin{matrix} \tan \theta =\frac{\left | A\cdot \sin \theta \right | }{\left | A\cdot \cos \theta \right | }, \left | A\cdot \sin \theta \right | \leq \left | A\cdot \cos \theta \right | \\ \cot \theta =\frac{\left | A\cdot \cos \theta \right | }{\left | A\cdot \sin \theta \right | }, \left | A\cdot \sin \theta \right | \geq \left | A\cdot \cos \theta \right | \end{matrix}\right.

其中,\theta为光栅信号相位

而以\left [ \frac{\pi }{2}, \pi\right ]区间来考察,原来在\left [ 0,\frac{\pi }{2} \right ]区间的A\cdot \sin \theta在此区间就变成了A\cdot \cos \theta(取绝对值的原因),而原来在\left [ 0,\frac{\pi }{2} \right ]区间的A\cdot \cos \theta在此区间就变成了A\cdot \sin \theta(取绝对值的原因),仍然可以按上述u_{3}构造正切函数。其他区间依次类推。

构造的正切函数u_{3}波形如下图。

新函数u_{3}近似三角波,是一个周期函数(周期为\frac{\pi }{2}),包含一半正切函数波形,一半余切函数波形。采用这种方法的线性度高,且不需要确定莫尔信号的峰值大小,不易受信号衰减的影响,因此,幅值细分法得到了广泛的应用。

2)区间划分

由于不同的区间采用的函数是不一样的,为了便于信号处理,将整个周期划分为8个区间,当前信号所处的区间可由u_{1}u_{2}极性,u_{1}u_{2}大小关系来进行确定。区间划分如下表。

区间u_{1}极性u_{2}极性\left |u_{1} \right |\left |u_{2} \right |大小比较
1++\left |u_{1} \right |< \left |u_{2} \right |
2++\left |u_{1} \right |> \left |u_{2} \right |
3+-\left |u_{1} \right |> \left |u_{2} \right |
4+-\left |u_{1} \right |< \left |u_{2} \right |
5--\left |u_{1} \right |< \left |u_{2} \right |
6--\left |u_{1} \right |> \left |u_{2} \right |
7-+\left |u_{1} \right |> \left |u_{2} \right |
8-+\left |u_{1} \right |< \left |u_{2} \right |

3)区间细分数确定

设N为一个周期内总细分数。为了方便计算,我们将8个区间的计算统一映射到第1个区间,得到在不同区间的细分数值,如下表。

区间细分数
1\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
2\frac{N}{4}-\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
3\frac{N}{4}+\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
4\frac{N}{2}-\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
5\frac{N}{2}+\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
6\frac{3\cdot N}{4}-\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
7\frac{3\cdot N}{4}+\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
8N-\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }

其中,

a)u_{1}u_{2}为各自区间的电压值

b)区间可由“2)区间划分”确定

2.细分实现

清楚原理,细分实现就比较简单了,细分实现框图如下图。

总的流程如下:

1)FPGA/DSP通过同步高速A/D采样,获取sin信号和cos信号幅值

2)FPGA/DSP通过区间划分表获取当前区间

3)FPGA/DSP通过当前区间,计算当前细分数

4)当信号经过一个周期后,总细分数加1

5)输出当前细分值

3.细分误差来源

造成细分误差的来源有很多,主要有以下几种:

1)直流误差。光栅输出正弦信号和余弦信号直流偏置不一样,造成A/D采样幅值不一样,从而造成计算相位时的误差。

2)幅值误差。光栅输出正弦信号和余弦信号幅值不一样,造成A/D采样幅值不一样,从而造成计算相位时的误差。

3)正交误差。光栅输出正弦信号和余弦信号有相位差,在计算相位时出现误差,可以通过示波器的李沙育图的圆度来判断。

可以通过误差补偿的方法减小误差,误差补偿顺序应遵循先进行直流补偿,再进行幅值补偿,最后进行正交补偿。

本文介绍了光栅幅值细分原理与实现。

这篇关于光栅幅值细分原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1017206

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte