【如何衡量相机标定结果的精度】相机标定评价函数

2024-05-30 06:12

本文主要是介绍【如何衡量相机标定结果的精度】相机标定评价函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关博客:

  1. 【鱼眼+普通相机】相机标定
  2. 【opencv】图像畸变校正

一、简介

常用的衡量相机标定结果精度的评价标准:

  1. 畸变矫正效果:标定过程中会估计畸变系数,畸变矫正的效果可以通过比较矫正前后的图像来评估。如果畸变得到有效矫正,说明标定过程较为成功。
  2. 重投影误差(Reprojection Error):这是最常用的评估相机标定精度的指标。它指的是在标定图像中检测到的特征点与通过相机参数投影得到的相应世界坐标点之间的距离。理想情况下,这个距离应该非常小。重投影误差越小,表明相机标定的精度越高。
  3. 反投影残差(Residual Error):这个指标衡量的是实际的三维点投影回二维图像平面后与观测到的二维点之间的距离。反投影残差较小,表明相机标定的精度较高。
  4. 参数估计误差:通过估计相机参数的标准误差,可以计算出参数估计的不确定性。这些标准误差可以用来计算置信区间,从而评估参数估计的准确性。

下面详细介绍一下重投影误差反投影残差

二 、重投影误差

定义:

重投影误差(Reprojection Error)是指在相机标定过程中,将三维世界坐标系中的点投影到二维图像平面上,然后与实际在图像中检测到的特征点之间的差异。这个差异通常用像素单位来衡量。

计算方法:

检测特征点:首先,在标定图像中检测到的特征点(通常是角点或棋盘格的交点)。
投影三维点:使用标定过程中估计出的相机内参(焦距、主点坐标)和畸变系数,将三维世界坐标系中的点投影到二维图像平面上。
计算误差:对于每个投影点,计算其与实际检测到的特征点之间的距离(通常是欧氏距离)。
求平均误差:对所有标定图像中的特征点,计算它们的重投影误差,然后求取平均值或中位数。

影响因素:

特征点检测的准确性:如果特征点检测不准确,会导致较大的重投影误差。
相机内参和畸变系数的估计精度:这些参数的准确估计对重投影误差有直接影响。
标定图像的数量和质量:标定图像越多,覆盖的视野越广,通常可以获得更准确的相机参数估计。
标定板的位姿:标定板在图像中的位姿应该多样化,以确保相机参数的全面估计。

优化方法:

提高特征点检测精度:使用更先进的算法或提高图像质量来提高特征点检测的准确性。
增加标定图像数量:收集更多的标定图像,特别是从不同角度和位置拍摄的图像。
优化标定算法:使用更先进的标定算法,如基于非线性优化的方法,来提高参数估计的精度。
标定板设计:设计易于特征点提取的标定板,如黑白相间的棋盘格或圆点图案。
结果解释:
误差较小:如果平均重投影误差很小(例如小于一个像素),通常认为相机标定是成功的。
误差较大:如果误差较大,可能需要重新审视标定过程,检查是否有误检测的特征点、标定图像质量是否足够高,或者标定算法是否需要调整。

代码:

# 计算标定的总重投影误差
total_reproj_error = 0
for i in range(len(object_points)):projected_imgpoints, _ = cv2.projectPoints(object_points[i], rvecs[i], tvecs[i], camera_matrix, distortion_coeffs)error_per_image = np.abs(corners[i] - projected_imgpoints.reshape(-1, 2)).reshape(-1)total_reproj_error += error_per_image.mean()average_reproj_error = total_reproj_error / len(corners)print(f"Average Reprojection Error: {average_reproj_error:.4f} pixels")

三、反投影残差

反投影残差(Residual Error)是评估相机标定精度的一个重要指标,它衡量的是三维空间中的物理点与其通过相机模型投影到二维图像平面上的点之间的差异。在相机标定的过程中,我们的目标是找到相机的内参(包括焦距、主点坐标等)和畸变系数,使得三维点的投影尽可能准确地对应到图像上的特征点。

概念:

  • 三维到二维的投影:在相机标定中,我们通常知道一些三维空间中点的世界坐标,并且这些点在图像上被观测到(通常是通过特征点检测得到的)。使用相机模型,我们可以将这些三维点投影到图像平面上。
  • 残差:反投影残差是指实际观测到的特征点位置与通过相机模型从三维坐标投影得到的位置之间的差异。

计算方法:

收集三维点的世界坐标:这些点通常位于一个标定板上,它们在三维空间中的位置是已知的。
使用相机模型进行投影:根据标定得到的相机内参和畸变系数,将三维世界坐标投影到图像平面上。
计算残差:对于每个三维点,计算其投影点与实际观测到的特征点之间的距离(通常是欧氏距离)。
求总残差或平均残差:对所有标定点,计算总残差或平均残差。

影响因素:

相机内参的准确性:包括焦距、主点坐标等,这些参数的准确性直接影响投影的准确性。
畸变系数的准确性:畸变系数用于矫正镜头畸变,如果不准确,会导致投影误差。
三维点的世界坐标的准确性:如果标定板上的点的世界坐标不准确,也会影响反投影残差。
特征点检测的准确性:图像上的特征点如果检测不准确,同样会影响残差的计算。

优化方法:

改进特征点检测算法:使用更准确的算法来检测图像上的特征点。
使用更精确的标定板:确保标定板上的三维点的世界坐标测量准确。
优化相机标定算法:采用非线性优化算法来更精确地估计相机参数。
增加标定图像的数量和多样性:使用多个角度和条件下拍摄的图像,以获得更全面的相机模型。

结果解释:

  • 残差较小:如果反投影残差较小,说明相机标定的精度较高,相机模型能够准确地将三维点投影到图像平面上。
  • 残差较大:如果残差较大,则可能需要重新审视标定过程,检查是否有误检测的特征点、标定图像质量是否足够高,或者标定算法是否需要调整。
    反投影残差是一个重要的量化指标,它帮助我们了解相机标定的准确性,并指导我们进行必要的优化。在高精度要求的应用中,如机器视觉、三维重建等,最小化反投影残差是非常关键的。

代码:

# 计算反投影残差
total_residual = 0
for i in range(len(object_points)):# 将3D点投影到2Dimg_points, _ = cv2.projectPoints(object_points[i], rvecs[i], tvecs[i], camera_matrix, distortion_coeffs)# 计算残差for j in range(len(img_points)):residual = np.linalg.norm(img_points[j] - corners[i][j].reshape(2))total_residual += residualaverage_residual = total_residual / (len(object_points) * len(corners))print(f"Total Residual: {total_residual}")
print(f"Average Residual: {average_residual}")

三、两者的区别

重投影误差(Reprojection Error)和反投影残差(Residual Error)都是衡量相机标定精度的指标,但它们的定义和计算方法有所不同。

  • 重投影误差关注的是将三维点投影到二维图像平面上后与实际观测点的偏差。
  • 反投影残差关注的是将二维图像点反投影到三维空间后与实际三维点的偏差。

重投影误差更常用于标定过程中相机参数的优化,而反投影残差则更多用于评估标定结果的准确性

这篇关于【如何衡量相机标定结果的精度】相机标定评价函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015785

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.