【如何衡量相机标定结果的精度】相机标定评价函数

2024-05-30 06:12

本文主要是介绍【如何衡量相机标定结果的精度】相机标定评价函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关博客:

  1. 【鱼眼+普通相机】相机标定
  2. 【opencv】图像畸变校正

一、简介

常用的衡量相机标定结果精度的评价标准:

  1. 畸变矫正效果:标定过程中会估计畸变系数,畸变矫正的效果可以通过比较矫正前后的图像来评估。如果畸变得到有效矫正,说明标定过程较为成功。
  2. 重投影误差(Reprojection Error):这是最常用的评估相机标定精度的指标。它指的是在标定图像中检测到的特征点与通过相机参数投影得到的相应世界坐标点之间的距离。理想情况下,这个距离应该非常小。重投影误差越小,表明相机标定的精度越高。
  3. 反投影残差(Residual Error):这个指标衡量的是实际的三维点投影回二维图像平面后与观测到的二维点之间的距离。反投影残差较小,表明相机标定的精度较高。
  4. 参数估计误差:通过估计相机参数的标准误差,可以计算出参数估计的不确定性。这些标准误差可以用来计算置信区间,从而评估参数估计的准确性。

下面详细介绍一下重投影误差反投影残差

二 、重投影误差

定义:

重投影误差(Reprojection Error)是指在相机标定过程中,将三维世界坐标系中的点投影到二维图像平面上,然后与实际在图像中检测到的特征点之间的差异。这个差异通常用像素单位来衡量。

计算方法:

检测特征点:首先,在标定图像中检测到的特征点(通常是角点或棋盘格的交点)。
投影三维点:使用标定过程中估计出的相机内参(焦距、主点坐标)和畸变系数,将三维世界坐标系中的点投影到二维图像平面上。
计算误差:对于每个投影点,计算其与实际检测到的特征点之间的距离(通常是欧氏距离)。
求平均误差:对所有标定图像中的特征点,计算它们的重投影误差,然后求取平均值或中位数。

影响因素:

特征点检测的准确性:如果特征点检测不准确,会导致较大的重投影误差。
相机内参和畸变系数的估计精度:这些参数的准确估计对重投影误差有直接影响。
标定图像的数量和质量:标定图像越多,覆盖的视野越广,通常可以获得更准确的相机参数估计。
标定板的位姿:标定板在图像中的位姿应该多样化,以确保相机参数的全面估计。

优化方法:

提高特征点检测精度:使用更先进的算法或提高图像质量来提高特征点检测的准确性。
增加标定图像数量:收集更多的标定图像,特别是从不同角度和位置拍摄的图像。
优化标定算法:使用更先进的标定算法,如基于非线性优化的方法,来提高参数估计的精度。
标定板设计:设计易于特征点提取的标定板,如黑白相间的棋盘格或圆点图案。
结果解释:
误差较小:如果平均重投影误差很小(例如小于一个像素),通常认为相机标定是成功的。
误差较大:如果误差较大,可能需要重新审视标定过程,检查是否有误检测的特征点、标定图像质量是否足够高,或者标定算法是否需要调整。

代码:

# 计算标定的总重投影误差
total_reproj_error = 0
for i in range(len(object_points)):projected_imgpoints, _ = cv2.projectPoints(object_points[i], rvecs[i], tvecs[i], camera_matrix, distortion_coeffs)error_per_image = np.abs(corners[i] - projected_imgpoints.reshape(-1, 2)).reshape(-1)total_reproj_error += error_per_image.mean()average_reproj_error = total_reproj_error / len(corners)print(f"Average Reprojection Error: {average_reproj_error:.4f} pixels")

三、反投影残差

反投影残差(Residual Error)是评估相机标定精度的一个重要指标,它衡量的是三维空间中的物理点与其通过相机模型投影到二维图像平面上的点之间的差异。在相机标定的过程中,我们的目标是找到相机的内参(包括焦距、主点坐标等)和畸变系数,使得三维点的投影尽可能准确地对应到图像上的特征点。

概念:

  • 三维到二维的投影:在相机标定中,我们通常知道一些三维空间中点的世界坐标,并且这些点在图像上被观测到(通常是通过特征点检测得到的)。使用相机模型,我们可以将这些三维点投影到图像平面上。
  • 残差:反投影残差是指实际观测到的特征点位置与通过相机模型从三维坐标投影得到的位置之间的差异。

计算方法:

收集三维点的世界坐标:这些点通常位于一个标定板上,它们在三维空间中的位置是已知的。
使用相机模型进行投影:根据标定得到的相机内参和畸变系数,将三维世界坐标投影到图像平面上。
计算残差:对于每个三维点,计算其投影点与实际观测到的特征点之间的距离(通常是欧氏距离)。
求总残差或平均残差:对所有标定点,计算总残差或平均残差。

影响因素:

相机内参的准确性:包括焦距、主点坐标等,这些参数的准确性直接影响投影的准确性。
畸变系数的准确性:畸变系数用于矫正镜头畸变,如果不准确,会导致投影误差。
三维点的世界坐标的准确性:如果标定板上的点的世界坐标不准确,也会影响反投影残差。
特征点检测的准确性:图像上的特征点如果检测不准确,同样会影响残差的计算。

优化方法:

改进特征点检测算法:使用更准确的算法来检测图像上的特征点。
使用更精确的标定板:确保标定板上的三维点的世界坐标测量准确。
优化相机标定算法:采用非线性优化算法来更精确地估计相机参数。
增加标定图像的数量和多样性:使用多个角度和条件下拍摄的图像,以获得更全面的相机模型。

结果解释:

  • 残差较小:如果反投影残差较小,说明相机标定的精度较高,相机模型能够准确地将三维点投影到图像平面上。
  • 残差较大:如果残差较大,则可能需要重新审视标定过程,检查是否有误检测的特征点、标定图像质量是否足够高,或者标定算法是否需要调整。
    反投影残差是一个重要的量化指标,它帮助我们了解相机标定的准确性,并指导我们进行必要的优化。在高精度要求的应用中,如机器视觉、三维重建等,最小化反投影残差是非常关键的。

代码:

# 计算反投影残差
total_residual = 0
for i in range(len(object_points)):# 将3D点投影到2Dimg_points, _ = cv2.projectPoints(object_points[i], rvecs[i], tvecs[i], camera_matrix, distortion_coeffs)# 计算残差for j in range(len(img_points)):residual = np.linalg.norm(img_points[j] - corners[i][j].reshape(2))total_residual += residualaverage_residual = total_residual / (len(object_points) * len(corners))print(f"Total Residual: {total_residual}")
print(f"Average Residual: {average_residual}")

三、两者的区别

重投影误差(Reprojection Error)和反投影残差(Residual Error)都是衡量相机标定精度的指标,但它们的定义和计算方法有所不同。

  • 重投影误差关注的是将三维点投影到二维图像平面上后与实际观测点的偏差。
  • 反投影残差关注的是将二维图像点反投影到三维空间后与实际三维点的偏差。

重投影误差更常用于标定过程中相机参数的优化,而反投影残差则更多用于评估标定结果的准确性

这篇关于【如何衡量相机标定结果的精度】相机标定评价函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015785

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http