人体头像面部的二维主成分分析(2D PCA)

2024-05-30 05:58

本文主要是介绍人体头像面部的二维主成分分析(2D PCA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

刚开始写博客,如果有什么不对的地方,请大家帮忙指出,谢谢!微笑

二维PCA介绍

在前一篇文章《PCA算法:从一组照片中获取特征脸(特征向量)》中,介绍了对人像进行一维PCA处理的过程及结果,并提取显示了特征脸。在后续应用中可以使用特征脸空间来表示人像,是数据从m*n(图片尺寸为m*n)的大小缩减到了p(p为选取的前p个特征脸)。再进行人脸识别、检测的时候只需要处理明显的特征,并且具有数据量大大减小,便于处理等好处。

PCA方法作为一种图像统计处理方法,平等地对待所有点,角度、光照、尺寸及表情的变化会导致识别率急剧下降。其次人脸在人脸空间的分布近似高斯分布,普通人脸靠近均值附近,难以识别。PCA具有好的表达能力,但是区分能力不足。其次,PCA将样本转化为一行,生成一个q行m*n列的矩阵(q为样本数),计算变得复杂。

近年来发展了很多对PCA的改进方法,2DPCA(2-dimensional principal component analysis)就是其中一种。

二维PCA基本思想

本节直接截取武汉理工大学齐兴敏硕士的论文《基于PCA的人脸识别技术的研究》(链接)的内容。


二维PCA实现过程

// PCA_2D.cpp : 定义控制台应用程序的入口点。
// by dhj555 572694157@qq.com
// ZJU University#include "stdafx.h"
#include <string>
#include <strstream>
#include <opencv2\opencv.hpp>
using namespace std;
using namespace cv;vector<Mat> loadImages();
double* matrix_mul(int* mat1, int m, int n, int* mat2, int k);
int* matrix_trans(int* mat, int m, int n);
double myDot(Mat mat1, Mat mat2);int _tmain(int argc, _TCHAR* argv[])
{//Mat mat = Mat(5, 5, CV_64FC1,0.0);//Mat lie = Mat(5, 1, CV_8UC1);//lie.at<uchar>(0) = 0;//lie.at<uchar>(1) = 1;//lie.at<uchar>(2) = 2;//lie.at<uchar>(3) = 3;//lie.at<uchar>(4) = 4;//mat.col(3) = lie;//Mat lie2 = mat.col(3);//cout << lie2.dot(lie);//cout << lie;//cout << mat;//1、定义变量int num_sample = 38;	//样本数量int num_eigen = 15;		//投影和重构使用的前num_eigen个特征向量int norm_row = 64, norm_col = 56;	//样本图像的尺寸vector<Mat> imgs = loadImages();	//所有样本图像Mat mean_face = Mat(norm_row, norm_col, CV_8UC1);	//平均脸vector<int> mean_face_total;mean_face_total.resize(norm_row * norm_col);//2、计算平均脸for (int n = 0; n < num_sample; n++){for (int i = 0; i < norm_row; i++){for (int j = 0; j < norm_col; j++){int index = i*norm_col + j;mean_face_total.at(index) += ((imgs.at(n))).at<uchar>(index);}}}for (int j = 0; j < norm_row * norm_col; j++){mean_face.at<uchar>(j) = (uchar)(mean_face_total.at(j) / num_sample);}//3、计算协方差矩阵Mat covar_matrix = Mat(norm_col, norm_col, CV_64FC1, 0.0);for (int n = 0; n < num_sample; n++){Mat img = Mat(norm_row, norm_col, CV_64FC1);for (int i = 0; i < norm_row*norm_col; i++)img.at<double>(i) = ((double)imgs.at(n).at<uchar>(i)) - ((double)mean_face.at<uchar>(i));covar_matrix = covar_matrix + (img.t()*img) / num_sample;}//4、计算特征值和特征向量Mat eValuesMat;		//特征值,从大大小排列Mat eVectorsMat;	//特征向量,按行排列,按照对应特征值的大小eigen(covar_matrix, eValuesMat, eVectorsMat);//5、投影到特征向量空间,并重构for (int n = 0; n < num_sample; n++){Mat origin_img_uchar = imgs.at(n);		//原图像Mat origin_img = Mat(norm_row, norm_col, CV_64FC1, 0.0);for (int index = 0; index < norm_row*norm_col; index++)origin_img.at<double>(index) = (double)origin_img_uchar.at<uchar>(index);Mat preject_mat = Mat(norm_row, num_eigen, CV_64FC1, 0.0);	//投影矩阵for (int i = 0; i < num_eigen; i++){for (int p = 0; p < norm_row; p++){Mat row1 = origin_img.row(p);Mat row2 = eVectorsMat.row(i);double res = row1.dot(row2);preject_mat.at<double>(p*num_eigen + i) = res;}//preject_mat.col(i) = origin_img*(eVectorsMat.row(i).t());}Mat recons_mat = Mat(norm_row, norm_col, CV_64FC1, 0.0);		//重构for (int j = 0; j < num_eigen; j++){recons_mat = recons_mat + (preject_mat.col(j))*(eVectorsMat.row(j));}float min = LLONG_MAX, max = LLONG_MIN, span = 0.0;for (int index = 0; index < norm_col*norm_row; index++){float d = recons_mat.at<double>(index);if (d>max)max = d;if (d < min)min = d;}span = max - min;Mat recon_face = Mat(norm_row, norm_col, CV_8UC1);for (int index = 0; index < norm_row*norm_col; index++){float d = recons_mat.at<double>(index);recon_face.at<uchar>(index) = (d - min) / span * 255.0;}Mat diff_face = Mat(norm_row, norm_col, CV_8UC1);//vector<float> diffs;//diffs.resize(norm_row*norm_col);for (int index = 0; index < norm_row*norm_col; index++){double origin_d = origin_img.at<double>(index);double recon_d = recons_mat.at<double>(index);//diffs.at(index) = origin_d - recon_d;diff_face.at<uchar>(index) = origin_d + 127 - recon_d;}char buffer[128];sprintf_s(buffer, "C:/Users/dhj555/Desktop/YelaFaces/PCA2D/1/1-000%dorgin.jpg", n);string orgin_ImgPath(buffer);sprintf_s(buffer, "C:/Users/dhj555/Desktop/YelaFaces/PCA2D/1/1-000%drecon.jpg", n);string recon_ImgPath(buffer);sprintf_s(buffer, "C:/Users/dhj555/Desktop/YelaFaces/PCA2D/1/1-000%ddiff.jpg", n);string diff_ImgPath(buffer);printf("%d st:\t%f\n", n, eValuesMat.at<double>(n));imwrite(orgin_ImgPath, origin_img);imwrite(recon_ImgPath, recons_mat);imwrite(diff_ImgPath, diff_face);}cout << "\n" << eVectorsMat;waitKey(0);return 0;
}vector<Mat> loadImages()
{vector<Mat> all_imgs;for (int i = 0; i < 38; i++){char buffer[128];sprintf_s(buffer, "C:/Users/dhj555/Desktop/YelaFaces/%d/%d-0001.jpg", i + 1, i + 1);string imgPath(buffer);Mat origin_img = imread(imgPath, CV_LOAD_IMAGE_GRAYSCALE);Mat img = Mat(64, 56, CV_8UC1);resize(origin_img, img, Size(56, 64));all_imgs.push_back(img);}return all_imgs;
}double myDot(Mat mat1, Mat mat2)
{double res = 0.0;if (mat1.cols == 1 && mat2.cols == 1 && mat1.rows == mat2.rows){for (int i = 0; i < mat1.rows; i++)res += mat1.at<double>(i)*mat2.at<double>(i);return res;}if (mat1.rows == 1 && mat2.rows == 1 && mat1.cols == mat2.cols){for (int i = 0; i < mat1.cols; i++)res += mat1.at<double>(i)*mat2.at<double>(i);return res;}return res;
}

二维PCA图片重构实验结果

此处列举5组实验结果。

注:

<span style="white-space:pre">	</span>double origin_d = origin_img.at<double>(index);double recon_d = recons_mat.at<double>(index);diff_face.at<uchar>(index) = origin_d + 127 - recon_d;
<span style="white-space:pre">	</span>由于使用了uchar表示像素灰度,直接相减可能出现负值,但是uchar不能表示复数,所以加上了127。

原始图像重构图像差异图像
求得的特征值:

0 st:   2160549.032902
1 st:   452443.355672
2 st:   269018.469038
3 st:   165124.140552
4 st:   106610.785769
5 st:   89444.567562
6 st:   73015.552536
7 st:   63570.818226
8 st:   39627.906668
9 st:   38556.676027
10 st:  36000.282860
11 st:  33237.237388
12 st:  25777.377389
13 st:  25500.496538
14 st:  22803.806736
15 st:  21003.406909
16 st:  19098.320455
17 st:  17029.164552
18 st:  15863.203747
19 st:  13805.013111
20 st:  13136.374819
21 st:  12094.863309
22 st:  10604.307490
23 st:  9949.116257
24 st:  8720.810884
25 st:  8338.006774
26 st:  7937.054498
27 st:  7164.202648
28 st:  6632.291813
29 st:  6019.611097
30 st:  5137.939391
31 st:  4889.753865
32 st:  4727.662225
33 st:  4287.633124
34 st:  3985.294864
35 st:  3955.256511
36 st:  3638.502077
37 st:  3460.752888

这篇关于人体头像面部的二维主成分分析(2D PCA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015754

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1