matlab——sparse函数和full函数(稀疏矩阵和非稀疏矩阵转换)

2024-05-30 03:32

本文主要是介绍matlab——sparse函数和full函数(稀疏矩阵和非稀疏矩阵转换),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

函数功能:生成稀疏矩阵 

使用方法 :
S = sparse(A) 
将矩阵A转化为稀疏矩阵形式,即矩阵A中任何0元素被去除,非零元素及其下标组成矩阵S。
如果A本身是稀疏的,sparse(S)返回S。 
S = sparse(i,j,s,m,n,nzmax) 
由向量i,j,s生成一个m*n的含有nzmax个非零元素的稀疏矩阵S,并且有 S(i(k),j(k)) = s(k)。
向量 i,j 和 s 有相同的长度。对应对向量i和j的值,s 中任何零元素将被忽略。
s 中在 i 和 j 处的重复值将被叠加。 
注意:如果i或j任意一个大于最大整数值范围,2^31-1, 稀疏矩阵不能被创建。 

S = sparse(i,j,s,m,n) 
用 nzmax = length(s) 
S = sparse(i,j,s) 
使m = max(i) 和 n = max(j),在s中零元素被移除前计算最大值,[i j s]中其中一行可能为[m n 0]。
S = sparse(m,n) 
sparse([],[],[],m,n,0)的缩写,生成一个m*n的所有元素都是0的稀疏矩阵。 


备注:
MATLAB中所有内置的算术,逻辑和索引操作都可以应用到稀疏矩阵或混合于稀疏和全矩阵上。
稀疏矩阵的操作返回稀疏矩阵,全矩阵的操作返回权矩阵。 
在大多数情况下,稀疏和全矩阵的混合操作返回全矩阵,例外的一种情况是混合操作的结果在结构上稀疏,例如,A.*S至少和矩阵S一样稀疏。 

应用举例:
S = sparse(1:n,1:n,1) 生成一个n*n的单位稀疏矩阵,和S = sparse(eye(n,n))有相同的结果,但是如果它的元素大部分是零元素的情况下也会暂时性的生成n*n的全矩阵。 

B = sparse(10000,10000,pi) 可能不是非常有用的,但是它是能运行和允许的,它生成一个10000*10000的仅仅包含一个非零原色的矩阵,不要用full(B),因为这需要800兆储存单元。 

分析和重组一个稀疏矩阵: 
[i,j,s] = find(S); 
[m,n] = size(S); 
S = sparse(i,j,s,m,n); 

如果最后一行和最后一列是非零项,有下面: 
[i,j,s] = find(S); 
S = sparse(i,j,s);

 

MATLAB中的full matrix和sparse matrix

对full matrix和sparse matrix的理解:其实这只是matlab中存储稀疏矩阵的两种方法。

 

MATLAB函数sparse简介
函数功能:
这个函数与稀疏矩阵有关。
先说MATLAB中两个概念:full storage organization(对应于full matrix)和sparse storage organization(对应于sparse matrix)。
而要说明这两个概念,需要介绍稀疏矩阵的概念。
一般意义上的稀疏矩阵,就是看起来很松散的,也就是说,在这个矩阵中,绝大多数元素是零。例如:
0, 0, 0, 0;
0, 0, 1, 0;
0, 0, 0, 0;
0, 1, 0, 2;


计算机存储稀疏矩阵可以有两种思路:
1.按照存储一个普通矩阵一样存储一个稀疏矩阵,比如上面这个稀疏矩阵中总共十六个元素(三个非零元素),把这些元素全部放入存储空间中。这种存储方式,在matlab就叫做full storage organization。
2.只存储非零元素,那么怎么存储呢?
(4,2)        1
(2,3)        1
(4,4)        2
看出来了吧, 只存储非零元素在稀疏矩阵中的位置和值。比如,上面所举的这个例子,值为2的项在第4行第4列,那么我们就只需要存储这一非零项在稀疏矩阵中的“坐标”(4,4)和这一非零项的值2。在MATLAB中,这种存储方式就叫做sparse storage organization。虽然,这样要多存储一组坐标,但如果稀疏矩阵中非零元素非常少,以这种存储方式存储稀疏矩阵反而节省了内存空间。


为什么matlab中会同时存在这两种存储方式呢?
第一种方式, 更加直观,进行矩阵运算时(比如稀疏矩阵的乘法),算法简单易实现。
而第二种方式,虽然有时可以节省存储数据时占用的存储空间,但进行运算时需要专门的算法实现(使用C语言编写过稀疏矩阵乘法的同学应该能体会到)。


sparse函数的功能就是把以第一种存储形式存储的稀疏矩阵转换成第二种形式存储(其实这个函数更重要的功能是构建稀疏矩阵,这里不再讨论)。对应的函数为full,即把以第二种方式存储的稀疏矩阵转换成第一种方式存储。
在MATLAB中,存储一个稀疏矩阵有两种方法。
语法格式:
S = sparse(A)
S = sparse(i,j,s,m,n,nzmax)
S = sparse(i,j,s,m,n)
S = sparse(i,j,s)
S = sparse(m,n)
各种语法格式详见MATLAB帮助文档。
相关函数:
full、issparse


程序示例
>> A = [0, 0, 0, 0;
0, 0, 1, 0;
0, 0, 0, 0;
0, 1, 0, 2];
>> sparse(A)
ans =
   (4,2)        1
   (2,3)        1
   (4,4)        2

当然sparse函数还可以通过一定规则构造稀疏矩阵,这里就不多说了。

这篇关于matlab——sparse函数和full函数(稀疏矩阵和非稀疏矩阵转换)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015454

相关文章

MySQL 多表连接操作方法(INNER JOIN、LEFT JOIN、RIGHT JOIN、FULL OUTER JOIN)

《MySQL多表连接操作方法(INNERJOIN、LEFTJOIN、RIGHTJOIN、FULLOUTERJOIN)》多表连接是一种将两个或多个表中的数据组合在一起的SQL操作,通过连接,... 目录一、 什么是多表连接?二、 mysql 支持的连接类型三、 多表连接的语法四、实战示例 数据准备五、连接的性

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t