【OrangePi AIpro】开箱初体验以及OAK深度相机测试

2024-05-30 01:28

本文主要是介绍【OrangePi AIpro】开箱初体验以及OAK深度相机测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 简介

        Orangepi AIPRO 是一款采用昇腾AI技术路线,集成4核64位处理器+AI处理器的单板计算机,集成图形处理器,支持8TOPS AI算力,拥有8GB/16GB LPDDR4X,可以外接eMMC模块,支持双4K高清输出。 

        Orange Pi AIpro拥有丰富的扩展接口,包括两个HDMI输出、GPIO接口、支持SATA/NVMe SSD 2280的M.2插槽(PCIe 4Lane)、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB(串口打印调试功能)、两个MIPI摄像头、一个MIPI屏等,预留电池接口,

Orange Pi AIpro已支持Ubuntu、openEuler操作系统,可以满足大多数AI算法原型验证、推理应用开发的需求。

2. 主要特性

  1. 处理器昇腾AI处理器(Ascend310B4)64bit 四核处理器,主频可达 1.5GHz
  2. 内存8GB LPDDR4X 内存
  3. 显示:支持 HDMI 2.0 最大分辨率可达 4K
  4. 网络:支持千兆以太网接口,Wi-Fi 5,蓝牙 4.2
  5. 接口:USB 3.0,USB 2.0,SATA 2.0,PCIe 2.0,I2C,SPI,GPIO
  6. 扩展:支持扩展多种 USB 和 PCIe 设备

3.使用方法

准备工作

  1. 下载针对 Orangepi AIPRO 的操作系统镜像文件(Ubuntu、openEuler),并将其烧录到 SD 卡中。

Ubuntu镜像

openEuler

  1. 将 SD 卡插入 Orangepi AIPRO 的 SD 卡槽,并开启电源。
  2. 系统将自动完成启动。

3.1连接串口及网络

      根据Orangepi AIPRO 提供的接口,我们可以很轻易的完成串口终端的登录和网络的配置,主要有一下几种方法:

  1. 通过HDMI线缆将开发板的HDMI0接口连接到我们的屏幕上,在熟悉的图形界面上配置wifi密码和设置以太网固定IP;
  2. 将开发板的microUSB调试串口通过USB线缆连接到电脑,可以使用串口终端登录 Linux 系统;(波特率:115200 数据位:8 停止位:1 None Flow Ctrl);
  3. 如果没有屏幕,我们可以通过在串口终端中使用nmtui工具来完成网络配置;

   接下来主要通过第三种方式介绍一下WIFI和千兆网络配置:

  1.在串口终端输入下面的命令开始搜索WIFI,ctrl+c退出搜索

nmcli dev wifi

2.配置WIFI名称与密码 wifi_name 需要替换为自己的WIFI名称 wifi_passwd 替换为WIFI密码

sudo nmcli dev wifi connect wifi_name password wifi_passwd
   成功后联网后会显示Device 'wlan0' successfully activated,通过PING一下网站域名可简单验证WIFI网络连通性。

3.千兆网口的配置

  • 通过命令查看网络连接状态,Wired connection 1就是千兆有线网络
nmcli con show

  • 输入下列命令完成千兆有线网络配置(可根据自己需要设置IP和网关地址)
    sudo nmcli con mod "Wired connection 1" ipv4.addresses "192.168.1.110" ipv4.gateway "192.168.1.1"  ipv4.dns "8.8.8.8" ipv4.method "manual"
  •  配置完成后 需要reboot生效
  • 在千兆网络端口没有连接网线时,无法查看端口详细的配置,此时我们将开发板连接到电脑通过下面的命令就可以查看固定IP是否配置成功
    • ip addr show eth0

4. USB深度摄像头初步测试

       由于Orangepi AIPRO板卡上提供了两个USB3.0接口可以很方便的连接USB相机,外置的深度相机可以节约AI处理器算力,让芯片专注于控制场景中的决策工作,手头刚好有OPENCV AI KIT的深度相机可以在Orangepi AIPRO测试一下。

       得益于Ubuntu系统强大的兼容性,我们可以通过简单的指令完成环境搭建;

# 安装依赖项
sudo wget -qO- https://docs.luxonis.com/install_depthai.sh | bash
# 安装显控软件
python3 -m pip install depthai-viewer
# 运行DepthAI Viewer
python3 -m depthai_viewer
      打开 depthai_viewer软件后,就可以看到深度相机传回的原始深度图像。

5.AI应用样例体验

       在Orangepi AIPRO板卡系统中还内置了多个有趣的AI处理案例,大大降低了学习门槛。

       在人像分割场景中,Orangepi AIPRO可以通过训练好的模型轻松实现深度学习神经网络PortraitNet,(PortraitNet是实时人像分割模型,该模型可以在移动设备上有效且高效地运行,基于轻量级的 U 形架构,在训练阶段有两个辅助损失,而在测试阶段不需要额外的成本进行肖像推理。两个辅助损失是边界损失和一致性约束损失。前者提高了边界像素的精度,后者增强了复杂光照环境下的鲁棒性)。

      5.1. 打开内置Jupyter Notebook AI样例的操作很便捷,只需要下面两条命令;

cd samples/notebooks/
./start_notebook.sh

 5.2. 运行Jupyter Notebook AI样例

    5.3.  输出对比图像

输入图像背景图像输出图像

     内置的AI样例中有很清晰的注释,在调试过程中很容易理解 各个代码模块对应的功能,可以很方便的修改,做到有的放矢。 

class Seg(object):"""人像分割模型推理"""def __init__(self, model_path, model_width, model_height):self._model_path = model_pathself._model_width = model_widthself._model_height = model_heightself.device_id = 0self._dvpp = Noneself._model = Nonedef init(self):"""初始化相关资源"""# Initialize dvppself._dvpp = AclLiteImageProc()# Load modelself._model = AclLiteModel(self._model_path)return const.SUCCESS@utils.display_timedef pre_process(self, image):"""图片预处理"""image_dvpp = image.copy_to_dvpp()yuv_image = self._dvpp.jpegd(image_dvpp)resized_image = self._dvpp.resize(yuv_image,self._model_width, self._model_height)return resized_image     @utils.display_timedef inference(self, input_data):"""模型推理"""return self._model.execute(input_data)@utils.display_timedef post_process(self, infer_output, image_name):"""获取分割结果"""data = infer_output[0]vals = data.flatten()mask = np.clip((vals * 255), 0, 255)mask = mask.reshape(224, 224, 2)cv2.imwrite(os.path.join(MASK_DIR, image_name), mask[:, :, 0])return mask @utils.display_time
def background_replace(bg_path, ori_path, mask_path):"""将人像分割结果与背景图片结合"""background = cv2.imread(bg_path)height, width = background.shape[:2]ori_img = cv2.imread(ori_path)mask = cv2.imread(mask_path, 0)mask = mask / 255mask_resize = cv2.resize(mask, (width, height))ori_img = cv2.resize(ori_img, (width, height))mask_bg = np.repeat(mask_resize[..., np.newaxis], 3, 2)result = np.uint8(background * mask_bg + ori_img * (1 - mask_bg))cv2.imwrite(os.path.join(OUTPUT_DIR, os.path.basename(mask_path)), result)def main():"""推理主函数"""os.makedirs(OUTPUT_DIR, exist_ok=True)os.makedirs(MASK_DIR, exist_ok=True)acl_resource = AclLiteResource()acl_resource.init()seg = Seg(MODEL_PATH, MODEL_WIDTH, MODEL_HEIGHT)ret = seg.init()utils.check_ret("seg.init ", ret)images_list = [os.path.join(IMAGE_DIR, img)for img in os.listdir(IMAGE_DIR)if os.path.splitext(img)[1] in const.IMG_EXT]for image_file in images_list:image_name = os.path.basename(image_file)if image_name != 'background.jpg':print('====' + image_name + '====')# read imageimage = AclLiteImage(image_file)# Preprocess the pictureresized_image = seg.pre_process(image)# Inferenceresult = seg.inference([resized_image, ])# Post-processingmask = seg.post_process(result, image_name)# Fusion of segmented portrait and background imagebackground_replace(os.path.join(IMAGE_DIR, 'background.jpg'), \image_file, os.path.join(MASK_DIR, image_name))

6. 总结

  1. 开箱测试外设功能并完成了Orangepi AIPRO的网络配置,体验了流畅的桌面系统;
  2. 测试了 OPENCV AI KIT USB3.0相机在Orangepi AIPRO的使用;
  3. 体验了Orangepi AIPRO内置的丰富AI样例。

7. 使用体验

通过这次体验Orangepi AIPRO板卡,我了解到了华为昇腾在AI领域深耕多年的强大实力,AI的未来不仅是好用的,更是易用的。

Orangepi AIPRO搭载的昇腾AI处理器(Ascend310B4)配合华为完整的开发工具,让开发者可以高效的实现AI应用程序的开发。

Orangepi AIPRO丰富的IO接口特别灵活,极大的丰富了AI的应用场景,既能很好的完成图像处理,也能实现控制功能。

8. 注意事项

  1. 在使用 Orangepi AIPRO 时,需要确认供电输入符合要求,以确保系统的稳定性和安全性。
  2. 开发板终端账号及密码  账号:root  密码: Mind@123  ;  账号:HwHiAiUser  密码:Mind@123

9. 参考资料

  • Orangepi AIPRO 官方网站
  • Orangepi AIPRO Wiki
  • Orangepi AIPRO 硬件文档
  • OrangePI AIPRO 用户手册

这篇关于【OrangePi AIpro】开箱初体验以及OAK深度相机测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015191

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?