C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍

本文主要是介绍C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、堆排序
    • 1. 排升序
      • (1). 建堆
      • (2). 排序
    • 2. 拍降序
      • (1). 建堆
      • (2). 排序
  • 二、建堆时间复杂度的计算
    • 1. 向上调整时间复杂度
    • 2. 向下调整时间复杂度
  • 三、TopK问题
  • 总结


前言

C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍


一、堆排序

排列一个一维数组,可以通过两个步骤进行排序。

  1. 建堆(大根堆或小根堆)
  2. 堆排序(通过向下或者向上调整排序)’

需要注意的是 堆排序排升序则建大堆,排降序则建小堆。

1. 排升序

(1). 建堆

这里建堆采用向下调整建堆,因为向上调整建堆的时间复杂度比向下调整建堆的时间复杂度大。可参考二。

  • 向下调整建堆,从最后一个叶子节点的父节点开始调整。
// 向下调整 按大根堆调整
void AdjustDown(HPDataType* a, int n ,int parent)
{int child = parent * 2 + 1;while (child < n){// 判断左右子树的根谁大 并防止越界if (child+ 1 < n && a[child] < a[child + 1]){child++;}if (a[child] > a[parent]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}
}// 排升序 建大堆
void HeapSort(int* arr, int n)
{int i = 0;// 建堆---向下调整建堆for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}
}
  • (n-1)是找到最后一个叶子节点,(n-1-1)/2找到最后一个叶子节点的双亲节点,然后向下调整。

(2). 排序

  • 排序的思想:
    和删除堆顶的元素的思想一样。
  1. 已经建好了大堆,所以先交换根元素和最后一个叶子节点元素。此时最后一个叶子节点是最大值。
  2. 将此时除了最后一个叶子节点元素看成一个堆,并将此时的根元素向下调整。
  3. 再继续交换根元素和此时最后一个叶子结点元素,重复以上过程。即可达到排序效果。
// 排升序 建大堆
void HeapSort(int* arr, int n)
{int i = 0;// 建堆---向下调整建堆for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}// 排序int end = n - 1;while (end > 0){Swap(&arr[0], &arr[end]);AdjustDown(arr, end, 0);end--;}
}int main()
{int arr[10] = { 2,3,1,9,5,7,8,6,4, 0 };HeapSort(arr, 10);int i = 0;for (i = 0; i < 10; i++){printf("%d ", arr[i]);}printf("\n");return 0;
}

效果如下:
在这里插入图片描述

2. 拍降序

(1). 建堆

  • 排降序,建小堆
  • 向下调整建小堆,向下调整的时间复杂度比向上调整时间复杂度低
// 向下调整 按小根堆调整
void AdjustDown(HPDataType* a, int n ,int parent)
{int child = parent * 2 + 1;while (child < n){// 判断左右子树的根谁小 并防止越界if (child+ 1 < n && a[child] > a[child + 1]){child++;}if (a[child] < a[parent]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}
}// 拍降序,建小堆
void HeapSort(int* arr, int n)
{int i = 0;for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}
}

(2). 排序

  • 排序的思想:
    和删除堆顶的元素的思想一样。
  1. 已经建好了小堆,所以先交换根元素和最后一个叶子节点元素。此时最后一个叶子节点是最小值。
  2. 将此时除了最后一个叶子节点元素看成一个堆,并将此时的根元素向下调整。
  3. 再继续交换根元素和此时最后一个叶子结点元素,重复以上过程。即可达到排序效果。
// 拍降序,建小堆
void HeapSort(int* arr, int n)
{int i = 0;// 建堆---- 向下调整建堆for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}// 排序int end = n - 1;while (end > 0){Swap(&arr[0], &arr[end]);AdjustDown(arr, end, 0);end--;}}int main()
{int arr[10] = { 2,3,1,9,5,7,8,6,4, 0 };HeapSort(arr, 10);int i = 0;for (i = 0; i < 10; i++){printf("%d ", arr[i]);}printf("\n");return 0;
}

效果如下:
在这里插入图片描述

注意拍升序和拍降序的向下调整函数是不一样的

二、建堆时间复杂度的计算

  • 建堆事实上是模拟堆中插入数据,并向上或向下调整。
  • 所以建堆时间复杂度的计算本质上是向上或者向下调整的时间复杂度

注意: 堆是完全二叉树,这里用满二叉树来近似计算,因为时间复杂度计算的是量级,多或少节点不影响。

1. 向上调整时间复杂度

见图示:
1.
在这里插入图片描述

在这里插入图片描述

2. 向下调整时间复杂度

见图示:
1.
在这里插入图片描述

在这里插入图片描述

三、TopK问题

在非常大的数字中找到前K个

  • 由于没有数据,先随机生成10000个数据写入文件中
  • 然后建K个数据的小堆
  • 剩余n-k个数据依次与小堆根元素比较,若大于根元素则入堆,并向下调整,若不大于根元素,则继续找下一个,知道文件读完。
void PrintfTopK(const char* file, int k)
{int* topk = (int*)malloc(sizeof(int)* k);if (topk == NULL){perror("PrintfTopK malloc");return;}// 以读的形式打开文件FILE* pfout = fopen(file, "r");if (pfout == NULL){perror("PrintfTopK fopen");return;}int i = 0;// 读出前K个数for (i = 0; i < k; i++){fscanf(pfout, "%d", &topk[i]);}// 建堆for (i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(topk, k, i);}// 剩余n - k 个数分别于根元素比较int val = 0;int ret = fscanf(pfout, "%d", &val);while (ret != EOF){if (val > topk[0]){topk[0] = val;AdjustDown(topk, k, 0);}ret = fscanf(pfout, "%d", &val);}for (i = 0; i < k; i++){printf("%d ", topk[i]);}free(topk);fclose(pfout);
}void CreateNData()
{int n = 10000;const char* file = "data.txt";FILE* pfin = fopen(file, "w");if (pfin == NULL){perror("TestTopK fopen");return;}int i = 0;for (i = 0; i < n; i++){int x = rand() % 10000;fprintf(pfin, "%d\n", x);}fclose(pfin);
}int main()
{srand((unsigned int)time(NULL));CreateNData();PrintfTopK("data.txt", 10);return 0;
}
  • 其中的向下调整都是按小根堆向下调整。可参考一、二内容

效果如下:
在这里插入图片描述


总结

C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍

这篇关于C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015179

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

MybatisPlus service接口功能介绍

《MybatisPlusservice接口功能介绍》:本文主要介绍MybatisPlusservice接口功能介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录Service接口基本用法进阶用法总结:Lambda方法Service接口基本用法MyBATisP

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField