C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍

本文主要是介绍C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、堆排序
    • 1. 排升序
      • (1). 建堆
      • (2). 排序
    • 2. 拍降序
      • (1). 建堆
      • (2). 排序
  • 二、建堆时间复杂度的计算
    • 1. 向上调整时间复杂度
    • 2. 向下调整时间复杂度
  • 三、TopK问题
  • 总结


前言

C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍


一、堆排序

排列一个一维数组,可以通过两个步骤进行排序。

  1. 建堆(大根堆或小根堆)
  2. 堆排序(通过向下或者向上调整排序)’

需要注意的是 堆排序排升序则建大堆,排降序则建小堆。

1. 排升序

(1). 建堆

这里建堆采用向下调整建堆,因为向上调整建堆的时间复杂度比向下调整建堆的时间复杂度大。可参考二。

  • 向下调整建堆,从最后一个叶子节点的父节点开始调整。
// 向下调整 按大根堆调整
void AdjustDown(HPDataType* a, int n ,int parent)
{int child = parent * 2 + 1;while (child < n){// 判断左右子树的根谁大 并防止越界if (child+ 1 < n && a[child] < a[child + 1]){child++;}if (a[child] > a[parent]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}
}// 排升序 建大堆
void HeapSort(int* arr, int n)
{int i = 0;// 建堆---向下调整建堆for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}
}
  • (n-1)是找到最后一个叶子节点,(n-1-1)/2找到最后一个叶子节点的双亲节点,然后向下调整。

(2). 排序

  • 排序的思想:
    和删除堆顶的元素的思想一样。
  1. 已经建好了大堆,所以先交换根元素和最后一个叶子节点元素。此时最后一个叶子节点是最大值。
  2. 将此时除了最后一个叶子节点元素看成一个堆,并将此时的根元素向下调整。
  3. 再继续交换根元素和此时最后一个叶子结点元素,重复以上过程。即可达到排序效果。
// 排升序 建大堆
void HeapSort(int* arr, int n)
{int i = 0;// 建堆---向下调整建堆for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}// 排序int end = n - 1;while (end > 0){Swap(&arr[0], &arr[end]);AdjustDown(arr, end, 0);end--;}
}int main()
{int arr[10] = { 2,3,1,9,5,7,8,6,4, 0 };HeapSort(arr, 10);int i = 0;for (i = 0; i < 10; i++){printf("%d ", arr[i]);}printf("\n");return 0;
}

效果如下:
在这里插入图片描述

2. 拍降序

(1). 建堆

  • 排降序,建小堆
  • 向下调整建小堆,向下调整的时间复杂度比向上调整时间复杂度低
// 向下调整 按小根堆调整
void AdjustDown(HPDataType* a, int n ,int parent)
{int child = parent * 2 + 1;while (child < n){// 判断左右子树的根谁小 并防止越界if (child+ 1 < n && a[child] > a[child + 1]){child++;}if (a[child] < a[parent]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}
}// 拍降序,建小堆
void HeapSort(int* arr, int n)
{int i = 0;for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}
}

(2). 排序

  • 排序的思想:
    和删除堆顶的元素的思想一样。
  1. 已经建好了小堆,所以先交换根元素和最后一个叶子节点元素。此时最后一个叶子节点是最小值。
  2. 将此时除了最后一个叶子节点元素看成一个堆,并将此时的根元素向下调整。
  3. 再继续交换根元素和此时最后一个叶子结点元素,重复以上过程。即可达到排序效果。
// 拍降序,建小堆
void HeapSort(int* arr, int n)
{int i = 0;// 建堆---- 向下调整建堆for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}// 排序int end = n - 1;while (end > 0){Swap(&arr[0], &arr[end]);AdjustDown(arr, end, 0);end--;}}int main()
{int arr[10] = { 2,3,1,9,5,7,8,6,4, 0 };HeapSort(arr, 10);int i = 0;for (i = 0; i < 10; i++){printf("%d ", arr[i]);}printf("\n");return 0;
}

效果如下:
在这里插入图片描述

注意拍升序和拍降序的向下调整函数是不一样的

二、建堆时间复杂度的计算

  • 建堆事实上是模拟堆中插入数据,并向上或向下调整。
  • 所以建堆时间复杂度的计算本质上是向上或者向下调整的时间复杂度

注意: 堆是完全二叉树,这里用满二叉树来近似计算,因为时间复杂度计算的是量级,多或少节点不影响。

1. 向上调整时间复杂度

见图示:
1.
在这里插入图片描述

在这里插入图片描述

2. 向下调整时间复杂度

见图示:
1.
在这里插入图片描述

在这里插入图片描述

三、TopK问题

在非常大的数字中找到前K个

  • 由于没有数据,先随机生成10000个数据写入文件中
  • 然后建K个数据的小堆
  • 剩余n-k个数据依次与小堆根元素比较,若大于根元素则入堆,并向下调整,若不大于根元素,则继续找下一个,知道文件读完。
void PrintfTopK(const char* file, int k)
{int* topk = (int*)malloc(sizeof(int)* k);if (topk == NULL){perror("PrintfTopK malloc");return;}// 以读的形式打开文件FILE* pfout = fopen(file, "r");if (pfout == NULL){perror("PrintfTopK fopen");return;}int i = 0;// 读出前K个数for (i = 0; i < k; i++){fscanf(pfout, "%d", &topk[i]);}// 建堆for (i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(topk, k, i);}// 剩余n - k 个数分别于根元素比较int val = 0;int ret = fscanf(pfout, "%d", &val);while (ret != EOF){if (val > topk[0]){topk[0] = val;AdjustDown(topk, k, 0);}ret = fscanf(pfout, "%d", &val);}for (i = 0; i < k; i++){printf("%d ", topk[i]);}free(topk);fclose(pfout);
}void CreateNData()
{int n = 10000;const char* file = "data.txt";FILE* pfin = fopen(file, "w");if (pfin == NULL){perror("TestTopK fopen");return;}int i = 0;for (i = 0; i < n; i++){int x = rand() % 10000;fprintf(pfin, "%d\n", x);}fclose(pfin);
}int main()
{srand((unsigned int)time(NULL));CreateNData();PrintfTopK("data.txt", 10);return 0;
}
  • 其中的向下调整都是按小根堆向下调整。可参考一、二内容

效果如下:
在这里插入图片描述


总结

C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍

这篇关于C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015179

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束