C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍

本文主要是介绍C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、堆排序
    • 1. 排升序
      • (1). 建堆
      • (2). 排序
    • 2. 拍降序
      • (1). 建堆
      • (2). 排序
  • 二、建堆时间复杂度的计算
    • 1. 向上调整时间复杂度
    • 2. 向下调整时间复杂度
  • 三、TopK问题
  • 总结


前言

C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍


一、堆排序

排列一个一维数组,可以通过两个步骤进行排序。

  1. 建堆(大根堆或小根堆)
  2. 堆排序(通过向下或者向上调整排序)’

需要注意的是 堆排序排升序则建大堆,排降序则建小堆。

1. 排升序

(1). 建堆

这里建堆采用向下调整建堆,因为向上调整建堆的时间复杂度比向下调整建堆的时间复杂度大。可参考二。

  • 向下调整建堆,从最后一个叶子节点的父节点开始调整。
// 向下调整 按大根堆调整
void AdjustDown(HPDataType* a, int n ,int parent)
{int child = parent * 2 + 1;while (child < n){// 判断左右子树的根谁大 并防止越界if (child+ 1 < n && a[child] < a[child + 1]){child++;}if (a[child] > a[parent]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}
}// 排升序 建大堆
void HeapSort(int* arr, int n)
{int i = 0;// 建堆---向下调整建堆for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}
}
  • (n-1)是找到最后一个叶子节点,(n-1-1)/2找到最后一个叶子节点的双亲节点,然后向下调整。

(2). 排序

  • 排序的思想:
    和删除堆顶的元素的思想一样。
  1. 已经建好了大堆,所以先交换根元素和最后一个叶子节点元素。此时最后一个叶子节点是最大值。
  2. 将此时除了最后一个叶子节点元素看成一个堆,并将此时的根元素向下调整。
  3. 再继续交换根元素和此时最后一个叶子结点元素,重复以上过程。即可达到排序效果。
// 排升序 建大堆
void HeapSort(int* arr, int n)
{int i = 0;// 建堆---向下调整建堆for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}// 排序int end = n - 1;while (end > 0){Swap(&arr[0], &arr[end]);AdjustDown(arr, end, 0);end--;}
}int main()
{int arr[10] = { 2,3,1,9,5,7,8,6,4, 0 };HeapSort(arr, 10);int i = 0;for (i = 0; i < 10; i++){printf("%d ", arr[i]);}printf("\n");return 0;
}

效果如下:
在这里插入图片描述

2. 拍降序

(1). 建堆

  • 排降序,建小堆
  • 向下调整建小堆,向下调整的时间复杂度比向上调整时间复杂度低
// 向下调整 按小根堆调整
void AdjustDown(HPDataType* a, int n ,int parent)
{int child = parent * 2 + 1;while (child < n){// 判断左右子树的根谁小 并防止越界if (child+ 1 < n && a[child] > a[child + 1]){child++;}if (a[child] < a[parent]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}
}// 拍降序,建小堆
void HeapSort(int* arr, int n)
{int i = 0;for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}
}

(2). 排序

  • 排序的思想:
    和删除堆顶的元素的思想一样。
  1. 已经建好了小堆,所以先交换根元素和最后一个叶子节点元素。此时最后一个叶子节点是最小值。
  2. 将此时除了最后一个叶子节点元素看成一个堆,并将此时的根元素向下调整。
  3. 再继续交换根元素和此时最后一个叶子结点元素,重复以上过程。即可达到排序效果。
// 拍降序,建小堆
void HeapSort(int* arr, int n)
{int i = 0;// 建堆---- 向下调整建堆for (i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}// 排序int end = n - 1;while (end > 0){Swap(&arr[0], &arr[end]);AdjustDown(arr, end, 0);end--;}}int main()
{int arr[10] = { 2,3,1,9,5,7,8,6,4, 0 };HeapSort(arr, 10);int i = 0;for (i = 0; i < 10; i++){printf("%d ", arr[i]);}printf("\n");return 0;
}

效果如下:
在这里插入图片描述

注意拍升序和拍降序的向下调整函数是不一样的

二、建堆时间复杂度的计算

  • 建堆事实上是模拟堆中插入数据,并向上或向下调整。
  • 所以建堆时间复杂度的计算本质上是向上或者向下调整的时间复杂度

注意: 堆是完全二叉树,这里用满二叉树来近似计算,因为时间复杂度计算的是量级,多或少节点不影响。

1. 向上调整时间复杂度

见图示:
1.
在这里插入图片描述

在这里插入图片描述

2. 向下调整时间复杂度

见图示:
1.
在这里插入图片描述

在这里插入图片描述

三、TopK问题

在非常大的数字中找到前K个

  • 由于没有数据,先随机生成10000个数据写入文件中
  • 然后建K个数据的小堆
  • 剩余n-k个数据依次与小堆根元素比较,若大于根元素则入堆,并向下调整,若不大于根元素,则继续找下一个,知道文件读完。
void PrintfTopK(const char* file, int k)
{int* topk = (int*)malloc(sizeof(int)* k);if (topk == NULL){perror("PrintfTopK malloc");return;}// 以读的形式打开文件FILE* pfout = fopen(file, "r");if (pfout == NULL){perror("PrintfTopK fopen");return;}int i = 0;// 读出前K个数for (i = 0; i < k; i++){fscanf(pfout, "%d", &topk[i]);}// 建堆for (i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(topk, k, i);}// 剩余n - k 个数分别于根元素比较int val = 0;int ret = fscanf(pfout, "%d", &val);while (ret != EOF){if (val > topk[0]){topk[0] = val;AdjustDown(topk, k, 0);}ret = fscanf(pfout, "%d", &val);}for (i = 0; i < k; i++){printf("%d ", topk[i]);}free(topk);fclose(pfout);
}void CreateNData()
{int n = 10000;const char* file = "data.txt";FILE* pfin = fopen(file, "w");if (pfin == NULL){perror("TestTopK fopen");return;}int i = 0;for (i = 0; i < n; i++){int x = rand() % 10000;fprintf(pfin, "%d\n", x);}fclose(pfin);
}int main()
{srand((unsigned int)time(NULL));CreateNData();PrintfTopK("data.txt", 10);return 0;
}
  • 其中的向下调整都是按小根堆向下调整。可参考一、二内容

效果如下:
在这里插入图片描述


总结

C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍

这篇关于C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015179

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图