⌈ 传知代码 ⌋ YOLOv9最新最全代码复现

2024-05-29 23:12

本文主要是介绍⌈ 传知代码 ⌋ YOLOv9最新最全代码复现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💛前情提要💛

本文是传知代码平台中的相关前沿知识与技术的分享~

接下来我们即将进入一个全新的空间,对技术有一个全新的视角~

本文所涉及所有资源均在传知代码平台可获取

以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦!!!

以下内容干货满满,跟上步伐吧~


📌导航小助手📌

  • 💡本章重点
  • 🍞一. 概述
  • 🍞二. YOLOv9模型概述
  • 🍞三. 环境搭建及训练推理
  • 🍞四. 总结和展望
  • 🍞五.参考链接
  • 🫓总结


💡本章重点

  • YOLOv9最新最全代码复现

🍞一. 概述

在目标检测领域,YOLO系列始终是速度与准确性的标杆。最新进展的YOLOv9,在《YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information》一文中展示了其性能的进一步提升。特别值得一提的是,即使在未采用Transformer结构的情况下,相较于RT-DETR、Yplov8等采用Transformer结构的模型,YOLOv9展现出了更为卓越的性能。本篇文章旨在详尽介绍YOLOv9的复现过程,包括环境配置、数据准备、模型训练与评估等关键步骤。该论文由YOLOv4、YOLOv7的作者王建尧博士撰写,对于目标检测领域的爱好者和研究者而言,无疑是一篇值得深入阅读的佳作。

在这里插入图片描述


🍞二. YOLOv9模型概述

YOLOv9沿袭了YOLO系列一贯的完全卷积结构,通过引入“Programmable Gradient Information”技术,增强了模型学习目标特征的灵活性,使其在多个标准数据集上实现了最佳状态(SOTA)。尤其在MS COCO数据集上,YOLOv9不同版本的模型在多项性能指标上均实现了显著提升。

模型框架图

  1. YOLOv9的模型框架设计体现了其对效率和性能的双重追求。核心改进包括:
    深度可编程特征提取器:YOLOv9采用了先进的深度可编程特征提取器,这使得模型能够根据不同的检测任务自动调整其结构和参数,从而提高学习效率和适应性。

  2. 有序列表增强特征金字塔网络(FPN):为了提升对小物体的检测能力,YOLOv9对特征金字塔网络的设计进行了增强,通过更有效的跨尺度连接和特征融合机制,增强了模型对于不同尺寸目标的识别精度。

  3. 有序列表多尺度训练和推理:YOLOv9实现了在训练和推理阶段的多尺度处理能力,通过动态调整输入图像的尺寸,使模型能够更加鲁棒地处理各种分辨率的图像,进一步提升了模型的泛化能力。

有序列表这些创新不仅提升了YOLOv9在目标检测领域的性能,也为未来的研究和应用提供了新的思路和可能性。

在这里插入图片描述


🍞三. 环境搭建及训练推理

环境配置

复现YOLOv9需要首先准备适宜的开发环境。我们推荐使用AutoDL平台,借助我已经准备好的环境镜像,可以免去繁琐的环境配置和数据集准备工作。
镜像信息详见附件

通过以下步骤可快速搭建:

  • 克隆官方代码库:
git clone https://github.com/WongKinYiu/yolov9.git
cd yolov9
  • 安装必要的Python依赖:
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

数据集准备

使用官方提供的脚本scripts/get_coco.sh下载并准备MS COCO数据集。该脚本会自动下载并解压数据集及标注文件。需要确保数据集目录结构正确,以便YOLOv9能正确读取数据。

bash scripts/get_coco.sh

训练过程

YOLOv9的训练支持单卡和多卡配置。以下是单卡训练的一个示例命令:

python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9.yaml --weights '' --name yolov9 --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

多卡训练能够显著提升训练速度和效率,但对硬件资源的要求更高。由于训练数据量庞大,此处将训练轮次调整为1轮,在配置有4090 GPU的环境下,预计训练时间接近1小时。

测试和评估

使用训练好的模型(也可以用镜像放置在ckpt文件夹下的模型)进行测试和评估,可以通过以下命令执行:

python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val

实践应用

YOLOv9可用于图片和视频的目标检测,以下是测试单张图片的命令示例:

python detect.py --weights ./ckpt/yolov9-c.pt --conf 0.25 --img-size 1024 768 --source infer/images/horses.jpg --device 0

在这里插入图片描述


🍞四. 总结和展望

通过复现YOLOv9,我们不仅深入了解了其核心技术和实现方法,还体验了从环境配置到模型训练、评估的整个过程。YOLOv9在目标检测领域的高适用性和优异性能,使其成为未来研究和应用的重要基石。随着技术的进一步发展,期待YOLOv9在更多场景下的应用和优化。


🍞五.参考链接

  • YOLOv9 GitHub仓库:链接

  • YOLOv9 论文:链接


🫓总结

综上,我们基本了解了“一项全新的技术啦” 🍭 ~~

恭喜你的内功又双叒叕得到了提高!!!

感谢你们的阅读😆

后续还会继续更新💓,欢迎持续关注📌哟~

💫如果有错误❌,欢迎指正呀💫

✨如果觉得收获满满,可以点点赞👍支持一下哟~✨

【传知科技 – 了解更多新知识】

在这里插入图片描述

这篇关于⌈ 传知代码 ⌋ YOLOv9最新最全代码复现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014905

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

Java日期类详解(最新推荐)

《Java日期类详解(最新推荐)》早期版本主要使用java.util.Date、java.util.Calendar等类,Java8及以后引入了新的日期和时间API(JSR310),包含在ja... 目录旧的日期时间API新的日期时间 API(Java 8+)获取时间戳时间计算与其他日期时间类型的转换Dur

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L