随机生成pytorch算子测试序列且保证算子参数合法

2024-05-29 18:52

本文主要是介绍随机生成pytorch算子测试序列且保证算子参数合法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随机生成pytorch算子测试序列且保证算子参数合法

  • 代码
  • 输出

背景:

1.一些对维度进行操作的算子的单算子测试,结果正常,但多个算子组合在一起,结果就不对。是否能给一个算子列表,随机生成它们的组合呢

功能描述:

1.此程序用于在 CUDA 环境中生成随机张量并对其施加一系列随机选择的操作

2.程序首先随机生成张量的形状和内容,然后随机选择一个操作(如 reshapetransposematmul 等),并生成适当的参数以执行该操作

3.最终输出变换后的张量并打印相关操作信息

4.整个过程在100次不同的种子下每次进行10次操作,以保证操作的多样性和结果的随机性

代码

import torch
import random
from functools import reduce
from operator import mul
import numpy as npmax_size = 4096  # 每个维度的最大大小
max_tensor_elements = 1*4096*4096  # 张量中元素的总数限制min_dim_size = 1  # 最小维度大小
max_dim_size = max_size  # 扩大这个范围可以更快生成符合要求的大小def generate_random_shape(dim, max_attempts=10):for _ in range(max_attempts):shape = [random.randint(min_dim_size, max_dim_size) for _ in range(dim)]if reduce(mul, shape, 1) <= max_tensor_elements:return tuple(shape)# 兜底策略,防止尝试次数用尽:再遍历生成的随机形状,逐个将维度缩小直到符合限制shape = [random.randint(1, max_size) for _ in range(dim)]current_elements = reduce(mul, shape, 1)while current_elements > max_tensor_elements:for i in range(len(shape)):if shape[i] > 1:shape[i] //= 2current_elements = reduce(mul, shape, 1)if current_elements <= max_tensor_elements:breakreturn tuple(shape)def generate_random_input(shape):return torch.randn(shape).to("cuda").half()def generate_random_operator(input_shape):operators = ['unsqueeze', 'repeat', 'permute', 'transpose', 'reshape', 'expand', 'contiguous', 'matmul', 'mul', 'concat',"view"]return random.choice(operators)def generate_random_reshape(input_shape):# 计算输入张量的总元素数total_elements = np.prod(input_shape)divisors = []# 找到 total_elements 的所有约数for i in range(1, int(np.sqrt(total_elements)) + 1):if total_elements % i == 0:divisors.append(i)if i != total_elements // i:divisors.append(total_elements // i)dimensions = []remaining_elements = total_elements# 随机选择新的维度并且保证元素数量不变while remaining_elements > 1 and len(dimensions) < len(input_shape):divisor = np.random.choice(divisors)dimensions.append(divisor)remaining_elements //= divisordivisors = [d for d in divisors if remaining_elements % d == 0]if remaining_elements > 1:dimensions.append(remaining_elements)    np.random.shuffle(dimensions)    return tuple(dimensions)def generate_reshape_params(tensor):return generate_random_reshape(tensor.shape)def random_transpose_params(tensor):return random.sample(range(tensor.dim()), 2)def generate_repeat_params(input_shape):while True:repeats = [random.randint(1, 4) for _ in input_shape]if reduce(mul, [dim * repeat for dim, repeat in zip(input_shape, repeats)], 1) <= max_tensor_elements:return tuple(repeats)def generate_expand_params(input_shape):expanded_shape = []while True:expanded_shape = [random.randint(min(2,dim), dim*2) if dim == 1 else dim for dim in input_shape]if reduce(mul, expanded_shape, 1) <= max_tensor_elements:breakreturn expanded_shapedef generate_random_operator_parameters(input_shape, operator, input_tensor):if operator == 'unsqueeze':return (random.randint(0, len(input_shape) - 1),)if operator == 'repeat':return generate_repeat_params(input_shape)if operator == 'permute':return random.sample(range(len(input_shape)), len(input_shape))if operator == 'transpose':return random_transpose_params(input_tensor)if operator in ['reshape',"view"]:return generate_reshape_params(input_tensor)if operator == 'expand':return generate_expand_params(input_shape)if operator == 'matmul':if input_tensor.dim() == 1:return ()return (input_tensor.size(-1), random.randint(1, max_size))if operator in ['contiguous','mul']:return ()if operator == 'concat':return (random.randint(0, len(input_shape) - 1),)def execute_operator(input_tensor, operator, operator_parameters):if operator == 'unsqueeze':return input_tensor.unsqueeze(*operator_parameters)if operator == 'repeat':return input_tensor.repeat(operator_parameters)if operator == 'permute':return input_tensor.permute(operator_parameters)if operator == 'transpose':return input_tensor.transpose(*operator_parameters)if operator == 'reshape':return input_tensor.reshape(operator_parameters)if operator == 'view':return input_tensor.view(operator_parameters)    if operator == 'expand':return input_tensor.expand(operator_parameters)if operator == 'contiguous':return input_tensor.contiguous()if operator == 'matmul':if input_tensor.dim() ==1:return input_tensorother = torch.randn(*operator_parameters).to(input_tensor.device).type_as(input_tensor)return torch.matmul(input_tensor, other)if operator == 'mul':return input_tensor * input_tensorif operator == 'concat':return torch.cat((input_tensor, input_tensor), dim=operator_parameters[0])def main():for seed in range(2):random.seed(seed)np.random.seed(seed)torch.random.manual_seed(seed)for i in range(10):input_shape = generate_random_shape(random.randint(2, 5))input_tensor = generate_random_input(input_shape)operator = generate_random_operator(input_shape)operator_parameters = generate_random_operator_parameters(input_shape, operator, input_tensor)output_tensor = execute_operator(input_tensor, operator, operator_parameters)print(f"seed:{seed:03d} seq:{i:02d} {operator:<10} input:{str(input_shape):<32} param:{str(operator_parameters):<32} output:{str(output_tensor.shape):<32}")print(output_tensor.cpu().numpy().reshape(-1)[:8])torch.cuda.empty_cache()
if __name__ == '__main__':main()

输出

seed:000 seq:00 repeat     input:(7, 42, 26, 36, 56)              param:(1, 1, 1, 1, 1)                  output:torch.Size([7, 42, 26, 36, 56])
seed:000 seq:01 view       input:(248, 227, 276)                  param:(92, 908, 186)                   output:torch.Size([92, 908, 186])
seed:000 seq:02 view       input:(18, 21, 51, 32, 17)             param:(17, 4536, 136)                  output:torch.Size([17, 4536, 136])
seed:000 seq:03 reshape    input:(2548, 3565)                     param:(644, 65, 217)                   output:torch.Size([644, 65, 217])
seed:000 seq:04 reshape    input:(46, 42, 14, 57, 7)              param:(28, 266, 3, 483)                output:torch.Size([28, 266, 3, 483])
seed:000 seq:05 contiguous input:(222, 100, 597)                  param:()                               output:torch.Size([222, 100, 597])
seed:000 seq:06 view       input:(15, 27, 56, 8, 59)              param:(3, 3, 20160, 1, 59)             output:torch.Size([3, 3, 20160, 1, 59])
seed:000 seq:07 view       input:(1461, 1161)                     param:(188469, 9)                      output:torch.Size([188469, 9])
seed:000 seq:08 reshape    input:(19, 29, 19, 17, 54)             param:(31407, 1, 3, 17, 6, 1)          output:torch.Size([31407, 1, 3, 17, 6, 1])
seed:000 seq:09 transpose  input:(12, 126, 46, 157)               param:[2, 3]                           output:torch.Size([12, 126, 157, 46])
[-0.581   0.568   1.187   2.46   -0.1392 -0.3362  0.2076 -0.662 ]
seed:001 seq:00 view       input:(119, 354, 236)                  param:(4, 1, 17, 146202)               output:torch.Size([4, 1, 17, 146202])
seed:001 seq:01 reshape    input:(60, 961, 178)                   param:(3, 3421160)                     output:torch.Size([3, 3421160])
seed:001 seq:02 expand     input:(16, 10, 34, 37, 58)             param:[16, 10, 34, 37, 58]             output:torch.Size([16, 10, 34, 37, 58])
seed:001 seq:03 concat     input:(12, 44, 12, 26, 55)             param:(1,)                             output:torch.Size([12, 88, 12, 26, 55])
seed:001 seq:04 expand     input:(48, 9, 28, 20, 68)              param:[48, 9, 28, 20, 68]              output:torch.Size([48, 9, 28, 20, 68])
seed:001 seq:05 repeat     input:(16, 16, 162, 233)               param:(1, 1, 1, 1)                     output:torch.Size([16, 16, 162, 233])
seed:001 seq:06 expand     input:(25, 426, 19, 63)                param:[25, 426, 19, 63]                output:torch.Size([25, 426, 19, 63])
seed:001 seq:07 permute    input:(153, 153, 380)                  param:[2, 1, 0]                        output:torch.Size([380, 153, 153])
seed:001 seq:08 permute    input:(3091, 1445)                     param:[1, 0]                           output:torch.Size([1445, 3091])
seed:001 seq:09 mul        input:(142, 254, 388)                  param:()                               output:torch.Size([142, 254, 388])
[3.31   0.3372 0.2354 0.1373 0.594  2.326  0.7344 2.16  ]

这篇关于随机生成pytorch算子测试序列且保证算子参数合法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014355

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看