Golang 切片(slice)扩容机制源码剖析

2024-05-29 18:18

本文主要是介绍Golang 切片(slice)扩容机制源码剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  目录

一、源码

二、原理

2.1 实例1

2.2 实例2

2.3 实例3


我们知道 Golang 切片(slice) 在容量不足的情况下会进行扩容,扩容的原理是怎样的呢?是不是每次扩一倍?下面我们结合源码来告诉你答案。

一、源码

Version : go1.15.6  src/runtime/slice.go

//go1.15.6 源码 src/runtime/slice.go
func growslice(et *_type, old slice, cap int) slice {//省略部分判断代码//计算扩容部分//其中,cap : 所需容量,newcap : 最终申请容量newcap := old.capdoublecap := newcap + newcapif cap > doublecap {newcap = cap} else {if old.len < 1024 {newcap = doublecap} else {// Check 0 < newcap to detect overflow// and prevent an infinite loop.for 0 < newcap && newcap < cap {newcap += newcap / 4}// Set newcap to the requested cap when// the newcap calculation overflowed.if newcap <= 0 {newcap = cap}}}//省略部分判断代码
}

二、原理

1. 如果当前所需容量 (cap) 大于原先容量的两倍 (doublecap),则最终申请容量(newcap)为当前所需容量(cap);

2. 如果<条件1>不满足,表示当前所需容量(cap)不大于原容量的两倍(doublecap),则进行如下判断;

3. 如果原切片长度(old.len)小于1024,则最终申请容量(newcap)等于原容量的两倍(doublecap);

4. 否则,最终申请容量(newcap,初始值等于 old.cap)每次增加 newcap/4,直到大于所需容量(cap)为止,然后,判断最终申请容量(newcap)是否溢出,如果溢出,最终申请容量(newcap)等于所需容量(cap);

这样说大家可能不太明白,来几个例子:

2.1 实例1

验证条件1:

package mainimport "fmt"func main() {//第1条中的例子:var slice = []int{1, 2, 3}var slice1 = []int{4, 5, 6, 7, 8, 9, 10, 11, 12}fmt.Printf("slice %v len = %v cap = %v\n", slice, len(slice), cap(slice))fmt.Printf("slice1 %v len = %v cap = %v\n", slice1, len(slice1), cap(slice1))slice = append(slice, slice1...)fmt.Printf("slice %v len = %v cap = %v\n", slice, len(slice), cap(slice))
}

输出:

[root@localhost test]# go run main.go 
slice [1 2 3] len = 3 cap = 3
slice1 [4 5 6 7 8 9 10 11 12] len = 9 cap = 9
slice [1 2 3 4 5 6 7 8 9 10 11 12] len = 12 cap = 12
[root@localhost test]#

在实例1中,所需容量 cap = 9+3 = 12,原容量的两倍 doublecap = 2 * 3 = 6,满足 <条件1> 即:所需容量大于原容量的两倍,所以最终申请容量 newcap = cap = 12。

2.2 实例2

验证条件2,3:

package main
import "fmt"func main() {//第2、3条中的例子:var slice = []int{1, 2, 3, 4, 5, 6, 7}var slice1 = []int{8, 9}fmt.Printf("slice %v len = %v cap = %v\n", slice, len(slice), cap(slice))fmt.Printf("slice1 %v len = %v cap = %v\n", slice1, len(slice1), cap(slice1))slice = append(slice, slice1...)fmt.Printf("slice %v len = %v cap = %v\n", slice, len(slice), cap(slice))
}

 输出:

[root@localhost test]# go run main.go 
slice [1 2 3 4 5 6 7] len = 7 cap = 7
slice1 [8 9] len = 2 cap = 2
slice [1 2 3 4 5 6 7 8 9] len = 9 cap = 14
[root@localhost test]# 

在实例2中,所需容量 cap = 7+2 = 9,原容量的两倍 doublecap = 2*7 = 14,原切片长度 old.len = 7,满足 <条件2,3>,即: 所需容量小于原容量的两倍,并且原切片长度 old.len 小于1024,所以,最终申请容量 newcap = doublecap = 14。

2.3 实例3

验证条件4:

package main
import "fmt"func main() {//第2条中的例子:var slice []intfor i := 0; i < 1024; i++ {slice = append(slice, i)}var slice1 = []int{1024, 1025}fmt.Printf("slice %v len = %v cap = %v\n", slice, len(slice), cap(slice))fmt.Printf("slice1 %v len = %v cap = %v\n", slice1, len(slice1), cap(slice1))slice = append(slice, slice1...)fmt.Printf("slice %v len = %v cap = %v\n", slice, len(slice), cap(slice))
}

输出:

[root@localhost test]# go run main.go 
slice [0 1 2 3 4 5 6……1017 1018 1019 1020 1021 1022 1023] len = 1024 cap = 1024
slice1 [1024 1025] len = 2 cap = 2
slice [0 1 2 3 4 5 6……1017 1018 1019 1020 1021 1022 1023 1024 1025] len = 1026 cap = 1280
[root@localhost test]#

在实例3中,所需容量 cap = 1024+2 = 1026,doublecap = 2048,  old.len = 1024,满足 <条件4> ,所以,newcap = 1024 + 1024/4 = 1280。

 

这篇关于Golang 切片(slice)扩容机制源码剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014274

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola