统计学习方法笔记-K近邻法

2024-05-29 17:32

本文主要是介绍统计学习方法笔记-K近邻法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

k近邻法是一种基本分类与回归方法,这儿只讨论分类问题中的k近邻法。k近邻法输入为实例的特征向量,输出为实例的类别,可以取多类。
K近邻算法
简介:
给定一个训练数据集,对新输入的实例,在训练数据集中找到与其最近邻的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类。
算法:
1、根据给定的距离度量,在训练集中找出实例x最邻近的k个实例,涵盖这k个实例的x的领域记作
2、在 中根据分类决策规则(如多数表决)决定x的类别y:

其中I()为指示函数,即yi = cj时,I()为1,否则为0

k近邻模型
模型:
特征空间中,对每个训练实例点xi,距离该点比其他点更近的区域,叫作单元。所有实例点的单元构成对特征区域的划分。最近邻法讲实例xi的类yi作为其单元中所有点的类标记。

距离度量:
特征空间中两个实例点的距离是两个实例点相似度的反映。k近邻法一般使用的距离是欧氏距离,但也可以是其他距离。


k值的选择:
选择较小的k值,学习的近似误差减小,但学习的估计误差会增大,预测结果对近邻的实例点非常敏感,如果近邻的实例点恰好是噪声,预测就会出错。也就是说k值减小,意味着模型变得复杂,更容易发生过拟合。
选择小的k值,可以减小估计误差,但是会增大近似误差,k值的增大意味着模型变得简单。
在应用中,k值一般去一个比较小的值,通常采用交叉验证法来选取最优k值。

分类决策规则:
k近邻法中分类决策规则往往是多数表决。误分类率是:
    
要使误分类率最小即经验风险最小,就得让     最大,所以多数表决等价于经验风险最小。

kd树

构造kd树:
1、开始:构造根结点,根结点对应于包含T(T为训练数据集)的k维空间的超矩形区域。
选择x¹为坐标轴,以T中所有x¹的中位数为切分点,将根结点对应的超矩形区域切分成两个子区域,切分由通过切分点并与坐标轴x¹垂直的超平面实现。
由根结点生成深度为1的左、右子结点:
2、重复:对深度为j的结点,选择 x ( l ) 为切分的坐标轴,l = j(mod k) + 1,以该结点的区域中所有实例的x( l )坐标的中位数为切分点(如果是偶数个,也可以最中间二者选其一),将该结点对应的超矩形区域切分为两个子区域。切分由通过切分点并且与坐标轴x( l )垂直的超平面实现。
    由该结点生成深度为j + 1的左、右子结点:左子结点对应坐标x( l )小于切分点的子区域,右子结点对应坐标x( l )大于切分点的子区域。
将落在切分超平面上的实例点保存在该结点。


搜索kd树:
1、在kd树中找出包含目标点x的叶结点:从根节点出发,递归向下访问kd树。若目标点x当前维的坐标小于切分点坐标,则移动到左子结点,否则移动到右子结点,直到子结点为叶结点为止。
(之所以上面这个过程没有判断等于(即目标点正好为某个父结点的特例),是因为单个维度等于不足以确定就是某个类,而目标点和训练点所有特征值相等的可能性太低,而单一特征值相等的可能性要高些,要是每出现某个纬度一样就对比所有特征值效率太低,所以干脆往右移,最终确定的一个叶结点。就算此时目标点正好是某个父节点甚至根节点这样的特例(可能性太低太低),最终也会找出这个父节点就是最近点,不会出现找出错误最近点的情况,总的来说不判断特殊情况利大于弊)
(我之前的观点:如果目标点当前维大于切分点坐标,且当前所在子结点只有左子结点并没有右子结点,那么就停留在当前结点。
这个观点有点问题,如果按照接下来的算法,这个观点不会在当前结点的区域下遍历找最近点,而是直接跳到父节点,所以具体实现还是得我找时间看kd树搜索算法的实现!)

2、以此叶结点为“当前最近点”

3、递归的向上回退,在每个结点执行以下操作:
a、如果该结点保存的实例点比当前最近点距离目标点更近,则以该实例为“当前最近点”(父结点在这个时候进行距离比较)
b、当前最近点一定存在于该结点一个子结点对应的区域。检查该子结点的父结点的另一个子结点对应的区域是否有更近的点。具体的,检查另一个子结点对应的区域是否与以目标点为球心,以目标点与“当前最近点”的距离为半径的超球体相交。
如果相交,可能在另一个子结点对应的区域存在距目标点更近的点,移动到另一个子结点,接着,递归地进行最近邻搜索(自解释:如果这个子结点的度不为0,则从选择叶结点步骤开始,否则直接比较此节点保存的唯一实例点);
如果不相交,向上回退。(子结树的所有点都不用比较了,这个时候效率就体现出来的)

4、当回到根节点时,搜索结束,最后的“当前最近点”即为x的最近邻点

这篇关于统计学习方法笔记-K近邻法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014177

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自