霍夫变换的基本理解(第八天)

2024-05-28 20:18

本文主要是介绍霍夫变换的基本理解(第八天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

千万注意:使用opencv自带的霍夫API

HoughLinesP():此函数输入的是一个二进制且八位的图像,例如:你不能用cvtcolor()变换之后直接输入。

HoughCircles():此函数输入的是一个灰度且八位的图像,例如:你不能经过threshold()、findcontours()等之后的图像进行输入。

我现在还不知道经过二值化的图像怎么转化为灰度图。。。。会了再补充。

 ---霍夫直线变换---

源程序没有分析,只是分析了基本的原理。。。等以后用到之后再进行分析

首先回顾一下坐标系的概念--->>>

1.直角坐标系(直线)<--->极坐标系(点),极坐标系(直线)<--->直角坐标系(点)。相互对应的关系

2.推导的公式很简单,看一下就懂了。

3.对于第三个公式,我们给定一个(x0,y0),就是图像的一个像素点(这个图是经过滤波、灰度、梯度等处理的),那么这个点在极坐标就可以画出一条直线。因为在极坐标看的不明显,把这个函数画在直角坐标系显示(图一),就类似三角函数的图像。现在我们再给定点(x1,y1)、(x2,y2)。。。进行同样的方法画图(图二),这个点在直角坐标系就是一条直线,那么多重合的点,就说明很多的像素点在这个直线上,我们设定一个阈值L,当点的重合率大于这个阈值就认定是直线。

4.有点饶人,直角和极坐标相互的转化实现。

 

图一

图二

上面的原理是可以运行的:

1.效率太低了,试想一下图像边缘非常的多,如果每一个像素点都进行计算的话,那太费时费事了。

2.线段的端点没办法检测。

3.对于相近的线段没办法区分。

HoughLinesP函数就是利用概率霍夫变换来检测直线的。它的一般步骤为:

1、随机抽取图像中的一个特征点,即边缘点,如果该点已经被标定为是某一条直线上的点,则继续在剩下的边缘点中随机抽取一个边缘点,直到所有边缘点都抽取完了为止;

2、对该点进行霍夫变换,并进行累加和计算;

3、选取在霍夫空间内值最大的点,如果该点大于阈值的,则进行步骤4,否则回到步骤1;

4、根据霍夫变换得到的最大值,从该点出发,沿着直线的方向位移,从而找到直线的两个端点;

5、计算直线的长度,如果大于某个阈值,则被认为是好的直线输出,回到步骤1。

opencv霍夫直线变换:

houghlines()--->>>

其返回的是(ρ,Θ),ρ代表距离(0,0)点到直线的欧几里得距离,也就是直线距离。Θ代表的是(0,0)点垂直直线然后与Y轴的夹角。

houghlinesP()--->>>

返回的是直线两个点:(x0,y0)(x1,y1)

刚开始我看不起houghlines函数,感觉效率低,后来基本上都是用houghlinesP的,但是这次实现文本的转正就用到了,这两个用途不一样吧!

---霍夫圆变换---

圆变换的想法和直线变化是一样的,就是把直角坐标系中的圆画在极坐标系中,然后求交点

第一阶段:检测圆心

1.1、对输入图像边缘检测;

1.2、计算图形的梯度,并确定圆周线,其中圆周的梯度就是它的法线;

1.3、在二维霍夫空间内,绘出所有图形的梯度直线,某坐标点上累加和的值越大,说明在该点上直线相交的次数越多,也就是越有可能是圆心;

1.4、在霍夫空间的4邻域内进行非最大值抑制;

1.5、设定一个阈值,霍夫空间内累加和大于该阈值的点就对应于圆心。

第二阶段:检测圆半径

2.1、计算某一个圆心到所有圆周线的距离,这些距离中就有该圆心所对应的圆的半径的值,这些半径值当然是相等的,并且这些圆半径的数量要远远大于其他距离值相等的数量;

2.2、设定两个阈值,定义为最大半径和最小半径,保留距离在这两个半径之间的值,这意味着我们检测的圆不能太大,也不能太小;

2.3、对保留下来的距离进行排序;

2.4、找到距离相同的那些值,并计算相同值的数量;

2.5、设定一个阈值,只有相同值的数量大于该阈值,才认为该值是该圆心对应的圆半径;

2.6、对每一个圆心,完成上面的2.1~2.5步骤,得到所有的圆半径。

 opencv实例:

 1 #include<iostream>2 #include <opencv2/opencv.hpp>3 #include <math.h>4 using namespace cv;5 using namespace std;6 7 int main(int argc,char**argv)8 {9     Mat input_image = imread("1.jpg");
10     if (input_image.data==NULL) {
11         return -1; cout << "can't open image.../";
12     }
13     imshow("Sourse image", input_image);
14     Mat mid_image,output_image, mid_image1;
15     mid_image.create(input_image.size(),input_image.type());
16     mid_image1.create(input_image.size(), input_image.type());
17     cvtColor(input_image,output_image,COLOR_BGR2GRAY);
18     GaussianBlur(output_image,output_image,Size(3,3),2,2);
19     Canny(output_image, output_image,50,200);
20     vector<Vec4i> lines;
21     vector<Vec3f> circles;
22     HoughLinesP(output_image,lines,1,CV_PI/180,80,50,10);
23     HoughCircles(output_image,circles,HOUGH_GRADIENT,1.5,10,200,100,0,0);
24     for (size_t i = 0; i < lines.size(); i++)
25     {
26         Vec4i l;
27         l = lines[i];
28         line(mid_image,Point(l[0],l[1]),Point(l[2],l[3]),Scalar(100,255,200),1,LINE_AA);
29     }
30     imshow("Destinate1 image", output_image);
31     imshow("Destinate2 image", mid_image);
32     for (size_t j = 0; j < circles.size(); j++)
33     {
34         Vec3f c;
35         c = circles[j];
36         circle(mid_image1, Point(cvRound(c[0]), cvRound(c[1])), 3, Scalar(0, 255, 50));
37         circle(mid_image1, Point(cvRound(c[0]), cvRound(c[1])), cvRound(c[2]), Scalar(0, 255, 50),3,8,0);
38     }
39     imshow("Destinate3 image", mid_image1);
40     waitKey(0);
41     return 0;
42 }

 opencv自带的API主要就是参数的设置,设置不好的参数要么检测的不好,要么根本检测不到直线和圆!

 1.圆的检测是找不到同心圆的

 2.很容易受噪声干扰

 3.必须非常的圆度,椭圆不行

主要参考:http://blog.csdn.net/zhaocj/article/details/50454847

这篇关于霍夫变换的基本理解(第八天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011587

相关文章

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java Instrumentation从概念到基本用法详解

《JavaInstrumentation从概念到基本用法详解》JavaInstrumentation是java.lang.instrument包提供的API,允许开发者在类被JVM加载时对其进行修改... 目录一、什么是 Java Instrumentation主要用途二、核心概念1. Java Agent

Kotlin 协程之Channel的概念和基本使用详解

《Kotlin协程之Channel的概念和基本使用详解》文章介绍协程在复杂场景中使用Channel进行数据传递与控制,涵盖创建参数、缓冲策略、操作方式及异常处理,适用于持续数据流、多协程协作等,需注... 目录前言launch / async 适合的场景Channel 的概念和基本使用概念Channel 的

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

DNS查询的利器! linux的dig命令基本用法详解

《DNS查询的利器!linux的dig命令基本用法详解》dig命令可以查询各种类型DNS记录信息,下面我们将通过实际示例和dig命令常用参数来详细说明如何使用dig实用程序... dig(Domain Information Groper)是一款功能强大的 linux 命令行实用程序,通过查询名称服务器并输