NCNN使用总结

2024-05-28 19:58
文章标签 总结 使用 ncnn

本文主要是介绍NCNN使用总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 友情提示
    • NCNN简介
    • NCNN注意事项
    • **NCNN使用心得**
      • 小技巧
      • 小想法

友情提示

友情提示不针对第三方,为了给读者更好的体验

  • 建议去我的博客园进行阅读
  • 微信地址
  • GitHub地址
  • 欢迎大家关注我的微信公众号

NCNN简介

ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工智能 APP,将 AI 带到你的指尖。ncnn 目前已在腾讯多款应用中使用,如 QQ,Qzone,微信,天天P图等。

关于安装、编译、使用步骤等不在赘述,官网有很详细文档

WindowsLinuxMacOSAndroidiOS
intel-cpu✔️✔️✔️/
intel-gpu✔️✔️/
amd-cpu✔️✔️✔️/
amd-gpu✔️✔️/
nvidia-gpu✔️✔️/
qcom-cpu✔️//
qcom-gpu✔️/✔️/
arm-cpu//
arm-gpu/✔️/
apple-cpu////
apple-gpu////✔️

NCNN注意事项

其实ncnn已经是一个完整的库,很少有人去改源码,当然如果你项目特别需要使可以的。

使用出现问题主要是输入输出的地方不对应,以下是本人使用出现的问题。

  • 网络问题一

使用caffe模型的时候,input部分一定要写成规范格式:

input: "data"
layer {name: "data"type: "Input"top: "data"input_param { shape: { dim: 1 dim: 1 dim: 256 dim: 512 } }
}

千万别图省事写成如下格式,caffe可以运行没问题,但是转化无法识别,这个ncnn数据结构导致!!!

input: "data"
input_dim: 1
input_dim: 1
input_dim: 256
input_dim: 512
  • 网络问题二

网络定义的层千万别出现重复情况,一定要规范定义:

layer {name: "AAAA"type: "Concat"bottom: "box_softmax"bottom: "conv6_2"top: "concat_out1"concat_param {axis: 2}
}
layer {name: "BBBB"type: "Concat"bottom: "box_softmax"bottom: "concat_out1"top: "concat_out2"concat_param {axis: 2}
}

千万别写成如下网络,在caffe可以稳定运行,但是ncnn会读取上第一次出现的top层!!!

第一层输出是concat_out1,第二层输出也是concat_out1,当使用ncnn.extract会出现错误!!!

layer {name: "AAAA"type: "Concat"bottom: "box_softmax"bottom: "conv6_2"top: "concat_out1"concat_param {axis: 2}
}
layer {name: "BBBB"type: "Concat"bottom: "box_softmax"bottom: "concat_out1"top: "concat_out1"concat_param {axis: 2}
}
  • NCNN网络问题三

这貌似是算作caffe的问题,在笔者使用的过程忽略了这一点,干脆算NCNN操作里面了。

Batch Normalization层有个use_global_stats参数,这个操作的作用是:是否使用caffe内部的均值和方差

换句话的意思就是:

---------true :使用caffe内部的均值和方差,其中方差和均值都是固定的,模型训练好之后,这两个值就固定了。
---------false :使用当前层计算的方差和均值,这个是不固定的,是在训练过程一直改变,训练好的时候达到最优。

其中NCNN默认使用true状态,不管是false还是true,最终都是算作true

caffe测试的时候得手动设置为true

  • NCNN输入数据一

正常来说ncnncaffe原版的误差范围在0.001左右,我的数据在0.000X范围徘徊,如果你的数据精确不到第三个有效数字,那就得检查网络输入精度了。

输入的substract_mean_normalize得尽量精确,尤其是归一化的值!!!

假设0-255的图像需要归一化到0-1

const float noml_vals[1] = { 0.0078431372549019607843137254902f };

千万不要写成下面这样,读者可以自己测试,精度差别较大。

const float noml_vals[1] = { 0.0078 }
  • NCNN输入数据二

这里没有错误点,只有心得点。

  1. 如果输入的是opencv的Mat对象,那只能是CV_8U类型,别想着去使用CV_32F等其他类型,对结果没有影响的。
  2. 关于使用opencv的处理图像和ncnn的处理图像效果一样,比如opencv的resize、normalize、cvtcolor等函数,和ncnn的from_pixels_resize、substract_mean_normalize效果基本没有区别,本人已经测试。

NCNN使用心得

小技巧

  • 输出为多层

看了NCNN的官网给的例子,它是将输出转化为一行数据,然后一个一个的进行处理:

ncnn::Mat out_flatterned = out.reshape(out.w * out.h * out.c);
std::vector<float> scores;
scores.resize(out_flatterned.w);
for (int j=0; j<out_flatterned.w; j++)
{scores[j] = out_flatterned[j];
}

个人感觉使用这种处理小数据还是可以的,本人使用网络输出100 × 100 × 10,这种情况该如何处理?

  1. 你可以使用那种方法去一个一个保存到数组,就是浪费点时间。
  2. 当你需要处理结果的时候呢?比如简单说去找每个channels的最大值,且主要知道坐标?

本人使用处理如下:

	for (size_t i = 0; i < out.c; i++){cv::Mat cv_mat = cv::Mat::zeros(cv::Size(100, 100), CV_8UC1);ncnn::Mat ppp = out.channel(i);//转化为opencv的Mat进行操作,因为有很多矩阵运算就很方便ppp.to_pixels(cv_mat.data, ncnn::Mat::PIXEL_GRAY);double max_c = 0, min_c = 0;cv::Point min_loc, max_loc;cv::minMaxLoc(cv_mat, &min_c, &max_c, &min_loc, &max_loc);/*---------------后续操作-----------------*/}

小想法

NCNN官网有个人问能不能输入和输出多个通道数据,后者已经在上文实现,以下看前者。

  • NCNN的输入为Extractor.input(const char* blob_name, const Mat& in),其中inncnn::Mat类型数据,显然是

    可以多个channels输入的。

  • 可以使用ncnn创建100×100×10数据,然后对每个channel通过from_pixel进行赋值操作即可。

没有经过具体实现,官网也没说明,不清楚能不能行,读者可以根据以上自己尝试。

这篇关于NCNN使用总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011538

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND