InternLM2-Math-Plus全面升级,全尺寸最强的开源数学模型

2024-05-28 15:20

本文主要是介绍InternLM2-Math-Plus全面升级,全尺寸最强的开源数学模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

总览

数学能力是大语言模型推理水平的重要体现。上海人工智能实验室在推出领先的开源数学模型InternLM2-Math的三个月之后对其进行了升级,发布了全新的 InternLM2-Math-Plus。升级后的 InternLM2-Math-Plus 在预训练和微调数据方面进行了全面的优化,显著提高了其在自然语言推理、代码解题以及形式化数学语言上的性能。模型包括了 1.8B、7B、20B、8x22B 四种不同尺寸的版本,其中 1.8B、7B、20B 版本基于 InternLM2 基座,而 8x22B 版本则基于 Mixtral-8x22B 基座。 我们在权威数学测试集 MATH(英文)和 MathBench(中英文)上进行了自然语言数学能力的测试。在性能方面,在每个级别的模型都超过了该级别的开源 SOTA 模型,其中 7B 版本则超过了 7B 的最强开源模型 Deepseek-Math-7B-RL,而 8x22B 的表现超过了国内的闭源模型且可以和 GPT-4-Turbo 相媲美。 在 MATH 测试集上,1.8B、7B、20B、8x22B 参数版本在 MATH 测试中的得分分别为 37.0、53.0、53.8 和 58.1 分。借助 Python 解释器,InternLM2-Math-Plus 在 MATH 上可以进一步取得 41.5、59.7、61.8 和 68.5 分的成绩,创开源模型的新高。 除此之外,InternLM2-Math-Plus 通过强化学习强化了形式化语言证明数学定理的能力。我们在开源数据集 MiniF2F-test 上进行了测试,其包含了不同难度的初高中数学竞赛中的题目。InternLM2-Math-Plus 在 MiniF2F-test 上达到了43.4 (pass@1)的性能,超过了之前 Meta 的算法 HTPS 的 41.0 的性能。 InternLM2-Math-Plus 的代码和模型完全开源,并支持免费商用。

  • GitHub:https://github.com/InternLM/InternLM-Math

  • Huggingface:https://huggingface.co/internlm

  • 技术报告:https://arxiv.org/abs/2402.06332

  • 在线试用:https://huggingface.co/spaces/internlm/internlm2-math-7b

下图是 InternLM2-Math-Plus 正确地解决了 2023 的高考题目的例子:

下图是 InternLM2-Math-Plus 通过代码解释器正确解决中国高中数学联赛一试题目的例子:

预训练和微调策略改进

InternLM2-Math-Plus 更新了预训练数据清洗的管线,从网页、书籍、论坛、代码等渠道重新清理了约百B的预训练数据,保证了模型在继续预训练阶段尽可能学到广泛的数学知识。在微调阶段,我们使用专家迭代的算法进行微调数据的构造。在每轮训练时,我们使用当前的 SFT 数据训练我们的模型,并用模型的自洽投票更新 SFT 数据。模型的最终微调来自多轮迭代后的训练数据。实践发现,专家迭代算法在不同参数量的模型(1.8B、7B、20B、8x22B)和不同任务(自然语言推理、Python 推理、形式语言证明)上都有提升。

媲美闭源模型的数学性能

我们先在数学榜单 MATH 上检验我们模型的性能。相比于 InternLM2-Math,InternLM2-Math-Plus 在自然语言数学推理和代码数学解题上都有明显的提升。在不同参数量的模型中,InternLM2-Math-Plus 都为同尺寸的最强开源模型。InternLM2-Math-Plus-Mixtral8x22B 在 MATH 上的准确率为 58.1(使用自然语言推理)、68.5(使用Python),刷新了开源模型的性能上限。

大多数数学模型都在 MATH 和 GSM8K 上进行了领域内增强,为了检测模型的泛化能力。我们测试了模型在 MathBench 上不同学段的应用题性能。可以看出模型在不同的学段都表现出一致的优越性,性能整体超过 Llama3、Qwen、Deepseek 等系列模型。InternLM2-Math-Plus-Mixtral8x22B 的性能更超过了 Qwen-Max-0428、Deepseek-V2、Llama-3-70B-Instruct 等重量级模型,和 Claude-3 Opus 表现得旗鼓相当。InternLM2-Math-Plus 系列在大学、高中等难度更大的题目上优势更大。

增强的形式化数学语言能力

语言模型在数学解题上已经有了长足的进步,但还不擅长数学定理的证明。人类本身也很难判定模型定理证明的正确性。形式化数学语言(如 LEAN、Coq 等)可以用来自动判别数学定理的正确性。除了更强的自然语言和 Python解题能力,InternLM2-Math-Plus 对形式化数学语言 LEAN 4 增强了适配。InternLM2-Math-Plus 通过多轮主动学习提升了自然语言和 LEAN 语言的双向翻译能力,通过专家迭代大幅增强了定理证明的能力。InternLM2-Math-Plus-7B在MiniF2F-test 的数据集上获得了单次采样 43.4 的证明准确率。超过了 Meta 的闭源 HTPS 算法的 41.0 的性能,也优于 Deepseek-Prover 的 30.0 的单次采样证明率。(注释为人做的解释,并非模型生成)

总结

InternLM2-Math-Plus 对自然语言能力和形式推理能力都进行了全面升级,成为开源数学模型的新标杆。InternLM2-Math-Plus 的未来发展方向是基于自然语言推理能力、Python 计算能力、LEAN 的证明能力三者融合的自我迭代提升。InternLM2-Math-Plus 在各项数学能力上都得到了提升。 为了进一步推动对语言模型的理解和数学能力的发展,我们希望与学术社区和研究人员一起合作,共同探索如何提升语言模型在数学推理上的能力。我们在这个方向长期招聘实习生,欢迎感兴趣的同学投递openmmlab@pjlab.org.cn进行咨询。

这篇关于InternLM2-Math-Plus全面升级,全尺寸最强的开源数学模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1010946

相关文章

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

mybatis-plus QueryWrapper中or,and的使用及说明

《mybatis-plusQueryWrapper中or,and的使用及说明》使用MyBatisPlusQueryWrapper时,因同时添加角色权限固定条件和多字段模糊查询导致数据异常展示,排查发... 目录QueryWrapper中or,and使用列表中还要同时模糊查询多个字段经过排查这就导致只要whe

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

升级至三频BE12000! 华硕ROG魔盒Pro路由器首发拆解评测

《升级至三频BE12000!华硕ROG魔盒Pro路由器首发拆解评测》华硕前两天推出新一代电竞无线路由器——ROG魔盒Pro(StrixGR7Pro),该产品在无线规格、硬件配置及功能设计上实现全... 作为路由器行业的T1梯队厂商,华硕近期发布了新旗舰华硕ROG魔盒Pro,除了保留DIY属性以外,高达120

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach