数字水印 | 混沌逻辑斯谛映射(Chaotic Logistic Map)基本原理及 Python 代码实现

本文主要是介绍数字水印 | 混沌逻辑斯谛映射(Chaotic Logistic Map)基本原理及 Python 代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 1 基本原理
      • 2 代码实现
      • 3 分岔图代码实现



1 基本原理

参考:维基百科 - 逻辑斯谛映射

逻辑斯谛映射(Logistic Map)是一种二次多项式的映射递推关系式,是一个由简单非线性方程式产生混沌现象的经典范例。其数学表达为:
x n + 1 = μ x n ( 1 − x n ) x_{n+1}=\mu x_n(1-x_n) xn+1=μxn(1xn)
其中,参数 μ \mu μ 通常取 ( 0 , 4 ] (0, 4] (0,4] 区间内的值,因此 x n x_n xn [ 0 , 1 ] [0, 1] [0,1] 上保持有界。

个人理解:可以把 x n x_n xn 看作是变量 X X X 在第 n n n 时刻的值,把 x n + 1 x_{n+1} xn+1 看作是变量 X X X 在第 n + 1 n+1 n+1 时刻的值。根据上述公式可知, x n + 1 x_{n+1} xn+1 的值是根据 x n x_n xn 的值计算出来的,即当前时刻的值是由上一时刻的值计算而来的,因此被称为递推关系式。

针对 x n x_n xn [ 0 , 1 ] [0, 1] [0,1] 上保持有界,参考下图:

在这里插入图片描述

个人理解:如果初值 x 0 x_0 x0 的值在 0 0 0 1 1 1 之间,那么根据二次函数的表达式, x n x_n xn 的值也必定在 0 0 0 1 1 1 之间。因此,我们说 x n x_n xn [ 0 , 1 ] [0, 1] [0,1] 上保持有界。




参数 μ \mu μ 的取值

  • 0 0 0 1 1 1 之间:不论起始数值 x 0 x_0 x0 为何, x n x_n xn 会越来越少,最后趋近于 0 0 0
  • 1 1 1 2 2 2 之间:不论起始数值 x 0 x_0 x0 为何, x n x_n xn 会快速地趋近 μ − 1 μ \frac{\mu-1}{\mu} μμ1
  • 2 2 2 3 3 3 之间:经过几次迭代, x n x_n xn 会越来越接近 μ − 1 μ \frac{\mu-1}{\mu} μμ1,而且收敛速度是线性的;
  • 3 3 3 x n x_n xn 仍然会越来越接近 μ − 1 μ \frac{\mu-1}{\mu} μμ1,但收敛速度较为缓慢,而且不是线性的;

个人理解:迭代次数就是指 x n + 1 = μ x n ( 1 − x n ) x_{n+1}=\mu x_n(1-x_n) xn+1=μxn(1xn) 计算了多少次,即 x n + 1 x_{n+1} xn+1 是初值 x 0 x_0 x0 迭代 n + 1 n+1 n+1 次的结果。

在这里插入图片描述

说明:由于散点图中的点粘在一起,看不出值的变化,因此我画的是折线图。但需要注意的是, x n + 1 x_{n+1} xn+1 的取值只会是一个个的点,而不包含图中的直线。

  • 3 3 3 1 + 6 ≈ 3.45 1+\sqrt{6}\approx3.45 1+6 3.45 之间:不论起始数值 x 0 x_0 x0 为何, x n x_n xn 最终会在 2 2 2 个值之间持续震荡;
  • 1 + 6 ≈ 3.45 1+\sqrt{6}\approx3.45 1+6 3.45 ≈ 3.54 \approx3.54 3.54 之间: x n x_n xn 最终会在 8 , 16 , 32 , . . . 8,16,32,... 8,16,32,... 个值之间持续震荡;
  • ≈ 3.5699 \approx3.5699 3.5699:震荡消失,系统进入混沌状态。不论起始数值 x 0 x_0 x0 为何,都不会再出现固定周期的震荡;

在这里插入图片描述

可以看出 μ \mu μ 越大, x n x_{n} xn 的震荡越没有周期性。



2 代码实现

参考:https://www.jianshu.com/p/580e36a34378

控制参数 μ \mu μ 的值不变,迭代 100 100 100 次,观察这 100 100 100 次中 x n x_{n} xn 值的变化:

import matplotlib.pyplot as plt
import numpy as npn = 1  # 控制迭代次数
x = 0.2  # 初值
mu = 2  # 参数μnum = []  # 存放x轴坐标
logistic_num = []  # 存放y轴坐标while n < 100:x = mu * x * (1.0 - x)  # 计算x_{n+1}的值num.append(n)  # 纳入该点的x轴坐标logistic_num.append(x)  # 纳入该点的y轴坐标n = n + 1# 画图
plt.plot(num, logistic_num, linestyle='-', linewidth=1.0)
plt.ylim(0, 1)
plt.yticks(np.arange(0, 1.2, 0.2))plt.savefig('{mu}.jpg'.format(mu=mu), dpi=400, bbox_inches='tight')
plt.show()

前文的两张图就是用这段代码绘制的。



3 分岔图代码实现

参考:https://blog.csdn.net/laplacebh/article/details/104598545

为参数 μ \mu μ 设置不同的值,迭代 1100 1100 1100 次,观察 1000 1000 1000 1100 1100 1100 次中 x n x_{n} xn 值的变化:

import matplotlib.pyplot as plt
import numpy as npdef logistic_map():mu = np.arange(2, 4, 0.0001)print(mu)  # [2.     2.0001 2.0002 ... 3.9997 3.9998 3.9999]x = 0.2  # 初值t1 = 1000  # 前1000次t2 = 100  # 后100次for i in range(t1 + t2):x = mu * x * (1 - x)if i >= t1:  # 只绘制1000~1100次的结果plt.plot(mu, x, ',k', alpha=0.25)plt.show()logistic_map()

由于我们想要观察的是 x n x_n xn 最终收敛或者未收敛的值,因此虽然做了 1100 1100 1100 次的迭代,但是我们只会绘制最后 100 100 100 x n ( x 1000 , . . . , x 1100 ) x_n(x_{1000},...,x_{1100}) xn(x1000,...,x1100) 的值。

效果如下图所示:

在这里插入图片描述
个人理解:

μ \mu μ 2 2 2 3 3 3 之间时,由于 x n x_n xn 最终会收敛到一个固定的值上,因此迭代 1000 1000 1000 1100 1100 1100 次之间的 x n x_n xn 值相同,汇聚在了上图中的一个点上。当 μ \mu μ 3 3 3 ≈ 3.45 \approx3.45 3.45 之间时,由于 x n x_n xn 最终会在 2 2 2 个值之间震荡,因此汇聚在了上图中的两个点上。

在这里插入图片描述

我们也可以反过来看,即根据结果推测原因。当 μ \mu μ ≈ 3.45 \approx3.45 3.45 ≈ 3.54 \approx3.54 3.54 之间时,由于 x n x_n xn 的值汇聚在了上图中的四个点上,因此可以看出 x n x_n xn 最终会在 4 4 4 个值之间震荡。



这篇关于数字水印 | 混沌逻辑斯谛映射(Chaotic Logistic Map)基本原理及 Python 代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1010686

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1