AI分析SP和pk进行sk分析

2024-05-28 10:36
文章标签 分析 进行 ai sp pk sk

本文主要是介绍AI分析SP和pk进行sk分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SP原始表行标题代表题目序号,列代表学生,如果学生答对题目为1,否则为0。问题知识点矩阵这个文件横轴代表每个知识点,列标题代表每个题目序号,如果题目包含这个知识点则该处值为1。通过两个文件判断学生对于每个知识点的掌握,生成一个Excel,列为学生,行标题为知识点。如果学生对每个知识点关联的题目都能答对吗,值为2,都答错值为0,一些答对一些答错值为1

1
按行遍历这个Excel中含1的单元格返回该单元格所在列

2

到这一步能成功返回结果

import pandas as pd# 读取Excel文件
df1 = pd.read_excel('问题-知识点矩阵.xlsx')class knowledge:def __init__(self, name):self.name = nameflag=0class question:def __init__(self, name):self.name = nameself.knowledge = []self.flag=0class student:def __init__(self, name):self.name = nameself.question= []# 创建student列表
students = []
questions = []knowledges=[]# 第一列的列名
first_column_name = df1.columns[0]students = []def get_student_results(file_path):# 读取Excel文件df = pd.read_excel(file_path)# 初始化一个空字典来存储结果results = {}# 遍历数据框的每一行for index, row in df.iterrows():# 初始化student对象student_obj = student(row['学生'])# 遍历除'学生'列之外的其他列for col in df.columns[1:]:# 检查学生的答案是否为1(正确)或0(错误)if row[col] == 1:flag = 1else:flag = 0# 创建question对象,并设置flagquestion_obj = question(col)question_obj.flag = flag# 将question对象添加到student对象的question列表中for index, value in df1[first_column_name].items():# 找到当前行中所有包含1的列ones_columns = [col for col in df1.columns[1:] if df1.at[index, col] == 1]# 遍历ones_columns列表中的每个列名# 创建question对象#print(question_obj.name)if question_obj.name ==  value:#value  是 题目#print(value)for col in ones_columns:# 将question对象添加到questions列表中question_obj.knowledge.append(col)questions.append(question_obj)student_obj.question.append(question_obj)# 遍历第一列的所有元素# 将student对象添加到students列表中students.append(student_obj)
get_student_results('sp原始表.xlsx')
# 遍历student列表,打印
for student in students:print(student.name)for question in student.question:print(question.name, question.flag)for knowledge in question.knowledge:print(knowledge)

在这里插入图片描述
分别返回 题目:答对还是打错

涉及到的知识点包括

成功获取集合:

import pandas as pd# 读取Excel文件
df1 = pd.read_excel('问题-知识点矩阵.xlsx')class knowledge:def __init__(self, name):self.name = nameflag=0class question:def __init__(self, name):self.name = nameself.knowledge = []self.flag=0class student:def __init__(self, name):self.name = nameself.question= []# 创建student列表
students = []
questions = []knowledges=[]# 第一列的列名
first_column_name = df1.columns[0]students = []def get_student_results(file_path):# 读取Excel文件df = pd.read_excel(file_path)# 初始化一个空字典来存储结果results = {}# 遍历数据框的每一行for index, row in df.iterrows():# 初始化student对象student_obj = student(row['学生'])# 遍历除'学生'列之外的其他列for col in df.columns[1:]:# 检查学生的答案是否为1(正确)或0(错误)if row[col] == 1:flag = 1else:flag = 0# 创建question对象,并设置flagquestion_obj = question(col)question_obj.flag = flag# 将question对象添加到student对象的question列表中for index, value in df1[first_column_name].items():# 找到当前行中所有包含1的列ones_columns = [col for col in df1.columns[1:] if df1.at[index, col] == 1]# 遍历ones_columns列表中的每个列名# 创建question对象#print(question_obj.name)if question_obj.name ==  value:#value  是 题目#print(value)for col in ones_columns:# 将question对象添加到questions列表中question_obj.knowledge.append(col)questions.append(question_obj)student_obj.question.append(question_obj)# 遍历第一列的所有元素# 将student对象添加到students列表中students.append(student_obj)
get_student_results('sp原始表.xlsx')right=[]
worng=[]
hunhe=[]
name=[]# 更改类名为AllResults以避免与内置函数all()冲突
class AllResults:def __init__(self, name):self.name = nameself.right = []  # 答对的知识点self.wrong = []  # 答错的知识点self.hunhe = []  # 交集,即答对和答错中都有的知识点# 假设students是已经定义好的学生列表
# students = [...]# 初始化存储结果的列表
all_results_list = []for student in students:# 创建AllResults实例all_results = AllResults(student.name)right_set = set()  # 使用集合来避免重复wrong_set = set()for question in student.question:if question.flag == 1:right_set.update(question.knowledge)elif question.flag == 0:wrong_set.update(question.knowledge)# 更新AllResults实例的属性all_results.right.extend(right_set)all_results.wrong.extend(wrong_set)all_results.hunhe.extend(right_set.intersection(wrong_set))# 移除交集部分all_results.right = list(right_set - wrong_set)all_results.wrong = list(wrong_set - right_set)# 添加到结果列表all_results_list.append(all_results)# 遍历all_results_list,写入txt文件
for i, all_results in enumerate(all_results_list):with open(f'{all_results.name}.txt', 'w') as f:f.write(f'{all_results.name}\n')f.write(f'答对知识点:{all_results.right}\n')f.write(f'答错知识点:{all_results.wrong}\n')f.write(f'交集知识点:{all_results.hunhe}\n')

下面开始判断
sk:

我要判断的是每个学生对于不同的问题,这些不同问题下面的相同知识点的flag是否一致

判断knowledge.name 的name相同的知识点 的flagflag是否都是1,或者都是0,或者有1有0三种情况
,返回给我关于每个knowledge.name所在的三种情况

class AllResults:
def init(self, name):
self.name = name
self.right = [] # 答对的知识点
self.wrong = [] # 答错的知识点
self.hunhe = [] # 交集,即答对和答错中都有的知识点 写本地代码把AllResults类中的name和s.xlsx对应以后,s.xlsx的表头是知识点,self.right = [] #
答对的知识点里面单元格填2,self.wrong = [] # 答错的知识点单元格填0, self.hunhe = [] #
交集,即答对和答错中都有的知识点用1填充,无需你运行,给我代码

这篇关于AI分析SP和pk进行sk分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1010325

相关文章

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种