AI分析SP和pk进行sk分析

2024-05-28 10:36
文章标签 分析 进行 ai sp pk sk

本文主要是介绍AI分析SP和pk进行sk分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SP原始表行标题代表题目序号,列代表学生,如果学生答对题目为1,否则为0。问题知识点矩阵这个文件横轴代表每个知识点,列标题代表每个题目序号,如果题目包含这个知识点则该处值为1。通过两个文件判断学生对于每个知识点的掌握,生成一个Excel,列为学生,行标题为知识点。如果学生对每个知识点关联的题目都能答对吗,值为2,都答错值为0,一些答对一些答错值为1

1
按行遍历这个Excel中含1的单元格返回该单元格所在列

2

到这一步能成功返回结果

import pandas as pd# 读取Excel文件
df1 = pd.read_excel('问题-知识点矩阵.xlsx')class knowledge:def __init__(self, name):self.name = nameflag=0class question:def __init__(self, name):self.name = nameself.knowledge = []self.flag=0class student:def __init__(self, name):self.name = nameself.question= []# 创建student列表
students = []
questions = []knowledges=[]# 第一列的列名
first_column_name = df1.columns[0]students = []def get_student_results(file_path):# 读取Excel文件df = pd.read_excel(file_path)# 初始化一个空字典来存储结果results = {}# 遍历数据框的每一行for index, row in df.iterrows():# 初始化student对象student_obj = student(row['学生'])# 遍历除'学生'列之外的其他列for col in df.columns[1:]:# 检查学生的答案是否为1(正确)或0(错误)if row[col] == 1:flag = 1else:flag = 0# 创建question对象,并设置flagquestion_obj = question(col)question_obj.flag = flag# 将question对象添加到student对象的question列表中for index, value in df1[first_column_name].items():# 找到当前行中所有包含1的列ones_columns = [col for col in df1.columns[1:] if df1.at[index, col] == 1]# 遍历ones_columns列表中的每个列名# 创建question对象#print(question_obj.name)if question_obj.name ==  value:#value  是 题目#print(value)for col in ones_columns:# 将question对象添加到questions列表中question_obj.knowledge.append(col)questions.append(question_obj)student_obj.question.append(question_obj)# 遍历第一列的所有元素# 将student对象添加到students列表中students.append(student_obj)
get_student_results('sp原始表.xlsx')
# 遍历student列表,打印
for student in students:print(student.name)for question in student.question:print(question.name, question.flag)for knowledge in question.knowledge:print(knowledge)

在这里插入图片描述
分别返回 题目:答对还是打错

涉及到的知识点包括

成功获取集合:

import pandas as pd# 读取Excel文件
df1 = pd.read_excel('问题-知识点矩阵.xlsx')class knowledge:def __init__(self, name):self.name = nameflag=0class question:def __init__(self, name):self.name = nameself.knowledge = []self.flag=0class student:def __init__(self, name):self.name = nameself.question= []# 创建student列表
students = []
questions = []knowledges=[]# 第一列的列名
first_column_name = df1.columns[0]students = []def get_student_results(file_path):# 读取Excel文件df = pd.read_excel(file_path)# 初始化一个空字典来存储结果results = {}# 遍历数据框的每一行for index, row in df.iterrows():# 初始化student对象student_obj = student(row['学生'])# 遍历除'学生'列之外的其他列for col in df.columns[1:]:# 检查学生的答案是否为1(正确)或0(错误)if row[col] == 1:flag = 1else:flag = 0# 创建question对象,并设置flagquestion_obj = question(col)question_obj.flag = flag# 将question对象添加到student对象的question列表中for index, value in df1[first_column_name].items():# 找到当前行中所有包含1的列ones_columns = [col for col in df1.columns[1:] if df1.at[index, col] == 1]# 遍历ones_columns列表中的每个列名# 创建question对象#print(question_obj.name)if question_obj.name ==  value:#value  是 题目#print(value)for col in ones_columns:# 将question对象添加到questions列表中question_obj.knowledge.append(col)questions.append(question_obj)student_obj.question.append(question_obj)# 遍历第一列的所有元素# 将student对象添加到students列表中students.append(student_obj)
get_student_results('sp原始表.xlsx')right=[]
worng=[]
hunhe=[]
name=[]# 更改类名为AllResults以避免与内置函数all()冲突
class AllResults:def __init__(self, name):self.name = nameself.right = []  # 答对的知识点self.wrong = []  # 答错的知识点self.hunhe = []  # 交集,即答对和答错中都有的知识点# 假设students是已经定义好的学生列表
# students = [...]# 初始化存储结果的列表
all_results_list = []for student in students:# 创建AllResults实例all_results = AllResults(student.name)right_set = set()  # 使用集合来避免重复wrong_set = set()for question in student.question:if question.flag == 1:right_set.update(question.knowledge)elif question.flag == 0:wrong_set.update(question.knowledge)# 更新AllResults实例的属性all_results.right.extend(right_set)all_results.wrong.extend(wrong_set)all_results.hunhe.extend(right_set.intersection(wrong_set))# 移除交集部分all_results.right = list(right_set - wrong_set)all_results.wrong = list(wrong_set - right_set)# 添加到结果列表all_results_list.append(all_results)# 遍历all_results_list,写入txt文件
for i, all_results in enumerate(all_results_list):with open(f'{all_results.name}.txt', 'w') as f:f.write(f'{all_results.name}\n')f.write(f'答对知识点:{all_results.right}\n')f.write(f'答错知识点:{all_results.wrong}\n')f.write(f'交集知识点:{all_results.hunhe}\n')

下面开始判断
sk:

我要判断的是每个学生对于不同的问题,这些不同问题下面的相同知识点的flag是否一致

判断knowledge.name 的name相同的知识点 的flagflag是否都是1,或者都是0,或者有1有0三种情况
,返回给我关于每个knowledge.name所在的三种情况

class AllResults:
def init(self, name):
self.name = name
self.right = [] # 答对的知识点
self.wrong = [] # 答错的知识点
self.hunhe = [] # 交集,即答对和答错中都有的知识点 写本地代码把AllResults类中的name和s.xlsx对应以后,s.xlsx的表头是知识点,self.right = [] #
答对的知识点里面单元格填2,self.wrong = [] # 答错的知识点单元格填0, self.hunhe = [] #
交集,即答对和答错中都有的知识点用1填充,无需你运行,给我代码

这篇关于AI分析SP和pk进行sk分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1010325

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装