牛客NC164 最长上升子序列(二)【困难 贪心+二分 Java/Go/PHP/C++】

2024-05-27 22:20

本文主要是介绍牛客NC164 最长上升子序列(二)【困难 贪心+二分 Java/Go/PHP/C++】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

在这里插入图片描述
题目链接:
https://www.nowcoder.com/practice/4af96fa010c44638a7e112abf65f7237

思路

贪心+二分

    所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理

Java代码

import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型一维数组 给定的数组* @return int整型*/public int LIS (int[] a) {//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/int n = a.length;if (n <= 1) return n;int[] dp = new int[n + 1];int idx = 1;dp[idx] = a[0];// 利用贪心 + 二分查找进行更新for (int i = 1; i < n ; i++) {if (dp[idx] < a[i]) {idx++;dp[idx] = a[i];} else {int l = 1;int r = idx;int pos = 0;while (l <= r) {int mid = (l + r) >> 1;if (dp[mid] < a[i]) {pos = mid;l = mid + 1;} else {r = mid - 1;}}dp[pos + 1] = a[i];}}return idx;}
}

Go代码

package main/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型一维数组 给定的数组* @return int整型*/
func LIS(a []int) int {//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/n := len(a)if n <= 1 {return n}dp := make([]int, n+1)idx := 1dp[idx] = a[0]//利用贪心+二分查找进行更新for i := 1; i < n; i++ {if dp[idx] < a[i] {idx++dp[idx] = a[i]} else {l := 1r := idxpos := 0for l <= r {mid := (l + r) >> 1if dp[mid] < a[i] {pos = midl = mid + 1} else {r = mid - 1}}dp[pos+1] = a[i]}}return idx
}

PHP代码

<?php/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型一维数组 给定的数组* @return int整型*/
function LIS( $a )
{//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/$n = count($a);if($n<=1){return $n;}$dp =[0];$idx = 1;$dp[$idx] = $a[0];// 利用贪心 + 二分查找进行更新for($i=1;$i<$n;$i++){if($dp[$idx] <$a[$i]){$idx++;$dp[$idx] = $a[$i];}else{$l=1;$r =$idx;$pos=0;while ($l<=$r){$mid = ($l+$r) >>1;if($dp[$mid] <$a[$i]){$pos = $mid;$l=$mid+1;}else{$r = $mid-1;}}$dp[$pos+1] = $a[$i];}}return $idx;
}

C++代码

class Solution {public:/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** 该数组最长严格上升子序列的长度* @param a int整型vector 给定的数组* @return int整型*/int LIS(vector<int>& a) {//https://blog.csdn.net/weixin_51216553/article/details/114678534/*贪心+二分所谓贪心,就是往死里贪,所以对于最大上升子序列,结尾元素越小,越有利于后面接上其他的数,也就可能变得更长所以贪心的做法是,建立一个dp数组,dp[i[表示长度为i的LIS结尾元素的最小值,因此我们只需要维护dp数组即可对于每一个数组的数,我们对他们进行判断,如果他大于等于dp[ans]的值,就把他放在数组后面,dp[++ans] = tr[i],否则,就在dp中去找大一个大于等于他的位置pos,dp[pos] = tr[i]。如果从头扫一遍数组,时间复杂度还是O(n^2),这与曹贼何异?!通过观察我们知道,这次维护的dp数组是单调递增的,所以就可以使出秘技二分之lower_bound来找pos的位置我们举个栗子:tr[] = 2 5 18 3 4 7 10 9 11 8 15dp[1] = 2;5大于2,所以dp[2] = 518大于5,所以dp[3] = 183小于18,所以二分去找,pos是2,所以dp[2] = 34小于18,所以二分去找,pos是3,所以dp[3] = 47大于4,所以dp[4] = 710大于7,所以dp[5] = 109小于10,所以二分去找,pos是5,dp[5] = 911大于9,所以dp[6] = 118小于11,所以二分去找,pos是5,dp[5] = 815大于11,所以dp[7] = 15所以最长上升子序列的长度为7注意:dp数组得到的不一定是真正的LIS比如:tr[] = 1 4 7 2 5 9 10 3得到的是1 2 3 9 10,而真正的LIS是1 2 5 9 10因此dp数组得到的不一定是真正的LIS,他只表示最长子序列长度的排好序的最小序列,对于最后一半将5换成3的意义是记录最小序列,便于后续数据的处理*/int n = a.size();if (n <= 1) {return n;}vector<int> dp(n + 1, 0);int idx = 1;dp[idx] = a[0];// 利用贪心 + 二分查找进行更新for (int i = 1; i < n; i++) {if (dp[idx] < a[i]) {dp[++idx] = a[i];} else {int l = 1;int r = idx;int pos = 0;while (l <= r) {int mid = (l + r) >> 1;if (dp[mid] < a[i]) {pos = mid;l = mid + 1;} else {r = mid - 1;}}dp[pos + 1] = a[i];}}return idx;}
};

这篇关于牛客NC164 最长上升子序列(二)【困难 贪心+二分 Java/Go/PHP/C++】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008755

相关文章

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

我们来说说Java LockSupport 的 park 和 unpark

《我们来说说JavaLockSupport的park和unpark》LockSupport是JDK底层线程阻塞工具,通过park/unpark实现线程阻塞与唤醒,避免死锁,与Object的w... 目录一、LockSupport1.1、LockSupport函数列表1.2、基本使用先 park 再 unpa

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

Java实现预览与打印功能详解

《Java实现预览与打印功能详解》在Java中,打印功能主要依赖java.awt.print包,该包提供了与打印相关的一些关键类,比如PrinterJob和PageFormat,它们构成... 目录Java 打印系统概述打印预览与设置使用 PageFormat 和 PrinterJob 类设置页面格式与纸张

使用Go实现文件复制的完整流程

《使用Go实现文件复制的完整流程》本案例将实现一个实用的文件操作工具:将一个文件的内容完整复制到另一个文件中,这是文件处理中的常见任务,比如配置文件备份、日志迁移、用户上传文件转存等,文中通过代码示例... 目录案例说明涉及China编程知识点示例代码代码解析示例运行练习扩展小结案例说明我们将通过标准库 os

Spring Security常见问题及解决方案

《SpringSecurity常见问题及解决方案》SpringSecurity是Spring生态的安全框架,提供认证、授权及攻击防护,支持JWT、OAuth2集成,适用于保护Spring应用,需配置... 目录Spring Security 简介Spring Security 核心概念1. ​Securit

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF