线性化技巧:绝对值变量的线性化

2024-05-27 22:04

本文主要是介绍线性化技巧:绝对值变量的线性化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

1. 问题

以方述诚老师课件中的案例为例:
m a x 3 x 1 − 2 x 2 − 4 ∣ x 3 ∣ s . t . − x 1 + 2 x 2 ≤ − 5 3 x 2 − x 3 ≥ 6 2 x 1 + x 3 = 12 x 1 , x 2 ≥ 0 max \quad 3x_1-2x_2-4\vert x_3 \vert \\ s.t. -x_1+2x_2 \leq -5 \\ 3x_2-x_3 \geq 6 \\ 2x_1 + x_3 = 12 \\ x_1,x_2 \geq 0 max3x12x24∣x3s.t.x1+2x253x2x362x1+x3=12x1,x20

x 3 x_3 x3是一个自由变量,且在目标函数中它是以绝对值的形式存在,如果我们要将该模型转化成标准型,首先要做的就是将 x 3 x_3 x3线性化。

2. 线性化

对于每一个数字 x x x,我们都可以将它拆成正的个数 x + x^+ x+和负的个数 x − x^- x,并将其表示为 x + − x − x^+ - x^- x+x(正的个数 - 负的个数),举个例子:

  • 5:正的个数是5,负的个数是0,5-0=5;
  • -5:正的个数是0,负的个数是5,0-5=-5。

直觉上十分合理对吧(intuition是方老师第一节课反复强调的重点),我们用数学表达式来表达上述思想。

x i ∈ R x_i \in R xiR

x i + = { x i , i f x i ≥ 0 0 , o t h e r w i s e x_i^+ = \begin{cases} x_i, \quad if \quad x_i \geq 0 \\ 0, otherwise \end{cases} xi+={xi,ifxi00,otherwise

x i − = { 0 , i f x i ≥ 0 − x i , o t h e r w i s e x_i^- = \begin{cases} 0, \quad if \quad x_i \geq 0 \\ -x_i, otherwise \end{cases} xi={0,ifxi0xi,otherwise

x i = x i + − x i − x_i = x_i^+ - x_i^- xi=xi+xi
x i + × x i − = 0 x_i^+ \times x_i^- = 0 xi+×xi=0

(很多教材和文章里直接省去了这个约束,其实是不对的,待会儿后面讲。)

x i + , x i − ≥ 0 x_i^+, x_i^- \geq 0 xi+,xi0

3. 缺少 x i + × x i − = 0 x_i^+ \times x_i^- = 0 xi+×xi=0 有什么问题

x i + × x i − = 0 x_i^+ \times x_i^- = 0 xi+×xi=0 该约束本质保证的是 x i + x_i^+ xi+ x i − x_i^- xi 至少有一个为0,如果没有该约束,5除了表示为5-0以外,还可以表示为6-1、7-2等等。也就是会使得原来只有一个解的问题,变成具有很多个新的解的问题。

4. 延伸思考

上述问题中的 ∣ x ∣ \vert x \vert x是一个“V”字型的凸函数,它可以求极小值。如果要求 m a x ∣ x ∣ max \vert x \vert maxx 那就unbounded了。

5. 参考文献

  1. Linear Programming

这篇关于线性化技巧:绝对值变量的线性化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1008718

相关文章

Mac备忘录怎么导出/备份和云同步? Mac备忘录使用技巧

《Mac备忘录怎么导出/备份和云同步?Mac备忘录使用技巧》备忘录作为iOS里简单而又不可或缺的一个系统应用,上手容易,可以满足我们日常生活中各种记录的需求,今天我们就来看看Mac备忘录的导出、... 「备忘录」是 MAC 上的一款常用应用,它可以帮助我们捕捉灵感、记录待办事项或保存重要信息。为了便于在不同

电脑蓝牙连不上怎么办? 5 招教你轻松修复Mac蓝牙连接问题的技巧

《电脑蓝牙连不上怎么办?5招教你轻松修复Mac蓝牙连接问题的技巧》蓝牙连接问题是一些Mac用户经常遇到的常见问题之一,在本文章中,我们将提供一些有用的提示和技巧,帮助您解决可能出现的蓝牙连接问... 蓝牙作为一种流行的无线技术,已经成为我们连接各种设备的重要工具。在 MAC 上,你可以根据自己的需求,轻松地

Python处理大量Excel文件的十个技巧分享

《Python处理大量Excel文件的十个技巧分享》每天被大量Excel文件折磨的你看过来!这是一份Python程序员整理的实用技巧,不说废话,直接上干货,文章通过代码示例讲解的非常详细,需要的朋友可... 目录一、批量读取多个Excel文件二、选择性读取工作表和列三、自动调整格式和样式四、智能数据清洗五、

如何关闭Mac的Safari通知? 3招教你关闭Safari浏览器网站通知的技巧

《如何关闭Mac的Safari通知?3招教你关闭Safari浏览器网站通知的技巧》当我们在使用Mac电脑专注做一件事情的时候,总是会被一些消息推送通知所打扰,这时候,我们就希望关闭这些烦人的Mac通... Safari 浏览器的「通知」功能本意是为了方便用户及时获取最新资讯,但很容易被一些网站滥用,导致我们

电脑提示Winmm.dll缺失怎么办? Winmm.dll文件丢失的多种修复技巧

《电脑提示Winmm.dll缺失怎么办?Winmm.dll文件丢失的多种修复技巧》有时电脑会出现无法启动程序,因为计算机中丢失winmm.dll的情况,其实,winmm.dll丢失是一个比较常见的问... 在大部分情况下出现我们运行或安装软件,游戏出现提示丢失某些DLL文件或OCX文件的原因可能是原始安装包

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

ubuntu16.04如何部署dify? 在Linux上安装部署Dify的技巧

《ubuntu16.04如何部署dify?在Linux上安装部署Dify的技巧》随着云计算和容器技术的快速发展,Docker已经成为现代软件开发和部署的重要工具之一,Dify作为一款优秀的云原生应用... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。它

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

Python中Flask模板的使用与高级技巧详解

《Python中Flask模板的使用与高级技巧详解》在Web开发中,直接将HTML代码写在Python文件中会导致诸多问题,Flask内置了Jinja2模板引擎,完美解决了这些问题,下面我们就来看看F... 目录一、模板渲染基础1.1 为什么需要模板引擎1.2 第一个模板渲染示例1.3 模板渲染原理二、模板

Pandas利用主表更新子表指定列小技巧

《Pandas利用主表更新子表指定列小技巧》本文主要介绍了Pandas利用主表更新子表指定列小技巧,通过创建主表和子表的DataFrame对象,并使用映射字典进行数据关联和更新,实现了从主表到子表的同... 目录一、前言二、基本案例1. 创建主表数据2. 创建映射字典3. 创建子表数据4. 更新子表的 zb