视觉SLAM十四讲:从理论到实践(Chapter6:非线性优化)

2024-05-27 21:12

本文主要是介绍视觉SLAM十四讲:从理论到实践(Chapter6:非线性优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

学习笔记,仅供学习,不做商用,如有侵权,联系我删除即可

一、目标

  1. 理解最小二乘法的含义和处理方式。
  2. 理解高斯牛 顿法(Gauss-Newton's method)、列文伯格一马夸尔特方法(Levenburg-Marquadt's method)等下降策略。
  3. 学习Ceres库和g2o库的基本使用方法。

二、状态估计问题

2.1 批量状态估计和最大后验估计

经典的SLAM系统的观测方程: 

视觉SLAM系统的观测方程:

早期是用滤波的方法进行状态最优估计,现在主流的方法是非线性优化的方法。

与SLAM的损失函数一致的是运动结构重建,但运动结构重建(SfM,Structure from Motion)不是实时的,且是无时间顺序图像,不符合SLAM的需求。

由于条件概率分布很难求,所以对于工程应用方面,转换成求最大值的问题:最大后验估计(MAP),由于视觉SLAM没有先验,所以最后转化为最大似然估计(Maximize Likelihood Estimation, MLE):

最大似然估计——可以理解为——在位姿x,标志点y状态下,最可能产生现在观测到的数据。

2.2 最小二乘法引出

数学方面的推导过程:

对于视觉SLAM系统,结合数学形式的推导,(6.9)式的第一项与位姿无关,所以最大似然变为求第二项的负对数最小化:

最终的目标函数形式转化为:

 

三、非线性最小二乘

通用迭代流程:

3.1 一阶和二阶梯度法

将目标函数在xk附近泰勒展开: 

J:Fx对x的一阶导数,也叫梯度、Jacobian矩阵 

H:二阶导数,Hessian矩阵 

最速下降法:只保留一次项,为了保证函数下降,只需要:

Newton法:保留二次项 , 

3.2 高斯牛顿法

先平方,后展开——最速下降法(存在不稳定的问题)、Newton法(需要求二阶梯度Hessian矩阵)

先展开,后平方——GN算法(用一阶梯度代替二阶梯度),LM算法(在GN的基础上增加了一个范围条件)

对函数fx本身进行一阶展开,不是对目标函数Fx进行一阶展开

在这种情况下,再将目标函数展开:

 

所以有正规方程:

GN步骤:

 但是GN法不能保证H是可逆的

3.3 列文伯格-马夸尔特方法(LM法)

依旧是这个近似模型:

近似程度的描述:

 ρ的分子是实际函数下降的值,分母是近似模型下降的值。ρ越小,表明近似模型过大,要减小Δx,反之同理。

步骤:

即相当于求解:

总结

非线性优化是个很大的主题,研究者们为之奋斗多年;
主要方法:最速下降、牛顿、G-N、L-M、DogLeg等;
与线性规划不同,非线性需要针对具体问题具体分析;
问题非凸时,对初值敏感,会陷入局部最优,目前没有非凸问题的通用最优值的寻找办法;

问题凸时,二阶方法通常一两步就能收敛。

这篇关于视觉SLAM十四讲:从理论到实践(Chapter6:非线性优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008603

相关文章

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

springboot依靠security实现digest认证的实践

《springboot依靠security实现digest认证的实践》HTTP摘要认证通过加密参数(如nonce、response)验证身份,避免明文传输,但存在密码存储风险,相比基本认证更安全,却因... 目录概述参数Demopom.XML依赖Digest1Application.JavaMyPasswo

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Java 结构化并发Structured Concurrency实践举例

《Java结构化并发StructuredConcurrency实践举例》Java21结构化并发通过作用域和任务句柄统一管理并发生命周期,解决线程泄漏与任务追踪问题,提升代码安全性和可观测性,其核心... 目录一、结构化并发的核心概念与设计目标二、结构化并发的核心组件(一)作用域(Scopes)(二)任务句柄

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

SpringBoot集成WebService(wsdl)实践

《SpringBoot集成WebService(wsdl)实践》文章介绍了SpringBoot项目中通过缓存IWebService接口实现类的泛型入参类型,减少反射调用提升性能的实现方案,包含依赖配置... 目录pom.XML创建入口ApplicationContextUtils.JavaJacksonUt

MyCat分库分表的项目实践

《MyCat分库分表的项目实践》分库分表解决大数据量和高并发性能瓶颈,MyCat作为中间件支持分片、读写分离与事务处理,本文就来介绍一下MyCat分库分表的实践,感兴趣的可以了解一下... 目录一、为什么要分库分表?二、分库分表的常见方案三、MyCat简介四、MyCat分库分表深度解析1. 架构原理2. 分

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4