Pytorch深度学习实践笔记8(b站刘二大人)

2024-05-27 18:12

本文主要是介绍Pytorch深度学习实践笔记8(b站刘二大人),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎬个人简介:一个全栈工程师的升级之路!
📋个人专栏:pytorch深度学习
🎀CSDN主页 发狂的小花
🌄人生秘诀:学习的本质就是极致重复!

《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili​

目录

1 Pytorch 数据加载

2 Dataset和DataLoader

3 程序


1 Pytorch 数据加载

  • epoch、Batch-size 、iteration


例如下图:
8个样本、shuffle是打乱样本的顺序,Batch-szie为2,iteration 就是 8 / 2 为4,epoch是训练集进行几个轮次的迭代。

 




2 Dataset和DataLoader

 




Dataset 是一个抽象类,使用时必须进行重写,from 在torch.utils.data Dataset
(1)重写时,需要根据数据来进行构造__init__(self,filepath)
(2)__getitem__(self,index)用来让数据可以进行索引操作
(3)__len__(self)用来获取数据集的大小
DataLoader 用来加载数据为mini-Batch ,支持Batch-size 的设置,shuffle支持数据的打乱顺序。

  • 参数说明:
from torch.utils.data import DataLoadertest_load = DataLoader(dataset=test_data, batch_size=4 , shuffle= True, num_workers=0,drop_last=False)


batch_size=4表示每次取四个数据
shuffle= True表示开启数据集随机重排,即每次取完数据之后,打乱剩余数据的顺序,然后再进行下一次取
num_workers=0表示在主进程中加载数据而不使用任何额外的子进程,如果大于0,表示开启多个进程,进程越多,处理数据的速度越快,但是会使电脑性能下降,占用更多的内存
drop_last=False表示不丢弃最后一个批次,假设我数据集有10个数据,我的batch_size=3,即每次取三个数据,那么我最后一次只有一个数据能取,如果设置为true,则不丢弃这个包含1个数据的子集数据,反之则丢弃

 

  • 数据转换为dataset形式,进行DataLoader的使用
x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)

pytorch中的DataLoader_pytorch dataloader-CSDN博客​


3 程序


数据分为训练集和测试集:Adam 训练

import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_splitimport matplotlib.pyplot as plt# 读取原始数据,并划分训练集和测试集
raw_data = np.loadtxt('./dataset/diabetes.csv.gz', delimiter=',', dtype=np.float32)
X = raw_data[:, :-1]
Y = raw_data[:, [-1]]
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,Y,test_size=0.1)
Xtest = torch.from_numpy(Xtest)
Ytest = torch.from_numpy(Ytest)# 将训练数据集进行批量处理
# prepare datasetclass DiabetesDataset(Dataset):def __init__(self, data,label):self.len = data.shape[0] # shape(多少行,多少列)self.x_data = torch.from_numpy(data)self.y_data = torch.from_numpy(label)def __getitem__(self, index):return self.x_data[index], self.y_data[index]def __len__(self):return self.lentrain_dataset = DiabetesDataset(Xtrain,Ytrain)
train_loader = DataLoader(dataset=train_dataset, batch_size=16, shuffle=True, num_workers=0) #num_workers 多线程# design model using classclass Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.linear1 = torch.nn.Linear(8, 6)self.linear2 = torch.nn.Linear(6, 4)self.linear3 = torch.nn.Linear(4, 2)self.linear4 = torch.nn.Linear(2, 1)self.sigmoid = torch.nn.Sigmoid()def forward(self, x):x = self.sigmoid(self.linear1(x))x = self.sigmoid(self.linear2(x))x = self.sigmoid(self.linear3(x))x = self.sigmoid(self.linear4(x))return xmodel = Model()# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)epoch_list = []
loss_list = []# training cycle forward, backward, update
def train(epoch):for i, data in enumerate(train_loader, 0):inputs, labels = datay_pred = model(inputs)loss = criterion(y_pred, labels)optimizer.zero_grad()loss.backward()optimizer.step()return loss.item()def test():with torch.no_grad():y_pred = model(Xtest)y_pred_label = torch.where(y_pred>=0.5,torch.tensor([1.0]),torch.tensor([0.0]))acc = torch.eq(y_pred_label, Ytest).sum().item() / Ytest.size(0)print("test acc:", acc)if __name__ == '__main__':for epoch in range(10000):loss_val = train(epoch)print("epoch: ",epoch," loss: ",loss_val)epoch_list.append(epoch)loss_list.append(loss_val)test()plt.plot(epoch_list,loss_list)plt.title("Adam")plt.xlabel("Epoch")plt.ylabel("Loss")plt.savefig("./data/pytorch7_1.png")



简单的程序
 

import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader# prepare datasetclass DiabetesDataset(Dataset):def __init__(self, filepath):xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)self.len = xy.shape[0] # shape(多少行,多少列)self.x_data = torch.from_numpy(xy[:, :-1])self.y_data = torch.from_numpy(xy[:, [-1]])def __getitem__(self, index):return self.x_data[index], self.y_data[index]def __len__(self):return self.lendataset = DiabetesDataset('./dataset/diabetes.csv.gz')
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=0) #num_workers 多线程# design model using classclass Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.linear1 = torch.nn.Linear(8, 6)self.linear2 = torch.nn.Linear(6, 4)self.linear3 = torch.nn.Linear(4, 1)self.sigmoid = torch.nn.Sigmoid()def forward(self, x):x = self.sigmoid(self.linear1(x))x = self.sigmoid(self.linear2(x))x = self.sigmoid(self.linear3(x))return xmodel = Model()# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)# training cycle forward, backward, update
if __name__ == '__main__':for epoch in range(100):for i, data in enumerate(train_loader, 0): # train_loader 是先shuffle后mini_batchinputs, labels = datay_pred = model(inputs)loss = criterion(y_pred, labels)print(epoch, i, loss.item())optimizer.zero_grad()loss.backward()optimizer.step()

🌈我的分享也就到此结束啦🌈
如果我的分享也能对你有帮助,那就太好了!
若有不足,还请大家多多指正,我们一起学习交流!
📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!
感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!欢迎关注、关注!

这篇关于Pytorch深度学习实践笔记8(b站刘二大人)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008220

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置