Pytorch深度学习实践笔记8(b站刘二大人)

2024-05-27 18:12

本文主要是介绍Pytorch深度学习实践笔记8(b站刘二大人),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎬个人简介:一个全栈工程师的升级之路!
📋个人专栏:pytorch深度学习
🎀CSDN主页 发狂的小花
🌄人生秘诀:学习的本质就是极致重复!

《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili​

目录

1 Pytorch 数据加载

2 Dataset和DataLoader

3 程序


1 Pytorch 数据加载

  • epoch、Batch-size 、iteration


例如下图:
8个样本、shuffle是打乱样本的顺序,Batch-szie为2,iteration 就是 8 / 2 为4,epoch是训练集进行几个轮次的迭代。

 




2 Dataset和DataLoader

 




Dataset 是一个抽象类,使用时必须进行重写,from 在torch.utils.data Dataset
(1)重写时,需要根据数据来进行构造__init__(self,filepath)
(2)__getitem__(self,index)用来让数据可以进行索引操作
(3)__len__(self)用来获取数据集的大小
DataLoader 用来加载数据为mini-Batch ,支持Batch-size 的设置,shuffle支持数据的打乱顺序。

  • 参数说明:
from torch.utils.data import DataLoadertest_load = DataLoader(dataset=test_data, batch_size=4 , shuffle= True, num_workers=0,drop_last=False)


batch_size=4表示每次取四个数据
shuffle= True表示开启数据集随机重排,即每次取完数据之后,打乱剩余数据的顺序,然后再进行下一次取
num_workers=0表示在主进程中加载数据而不使用任何额外的子进程,如果大于0,表示开启多个进程,进程越多,处理数据的速度越快,但是会使电脑性能下降,占用更多的内存
drop_last=False表示不丢弃最后一个批次,假设我数据集有10个数据,我的batch_size=3,即每次取三个数据,那么我最后一次只有一个数据能取,如果设置为true,则不丢弃这个包含1个数据的子集数据,反之则丢弃

 

  • 数据转换为dataset形式,进行DataLoader的使用
x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)

pytorch中的DataLoader_pytorch dataloader-CSDN博客​


3 程序


数据分为训练集和测试集:Adam 训练

import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_splitimport matplotlib.pyplot as plt# 读取原始数据,并划分训练集和测试集
raw_data = np.loadtxt('./dataset/diabetes.csv.gz', delimiter=',', dtype=np.float32)
X = raw_data[:, :-1]
Y = raw_data[:, [-1]]
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,Y,test_size=0.1)
Xtest = torch.from_numpy(Xtest)
Ytest = torch.from_numpy(Ytest)# 将训练数据集进行批量处理
# prepare datasetclass DiabetesDataset(Dataset):def __init__(self, data,label):self.len = data.shape[0] # shape(多少行,多少列)self.x_data = torch.from_numpy(data)self.y_data = torch.from_numpy(label)def __getitem__(self, index):return self.x_data[index], self.y_data[index]def __len__(self):return self.lentrain_dataset = DiabetesDataset(Xtrain,Ytrain)
train_loader = DataLoader(dataset=train_dataset, batch_size=16, shuffle=True, num_workers=0) #num_workers 多线程# design model using classclass Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.linear1 = torch.nn.Linear(8, 6)self.linear2 = torch.nn.Linear(6, 4)self.linear3 = torch.nn.Linear(4, 2)self.linear4 = torch.nn.Linear(2, 1)self.sigmoid = torch.nn.Sigmoid()def forward(self, x):x = self.sigmoid(self.linear1(x))x = self.sigmoid(self.linear2(x))x = self.sigmoid(self.linear3(x))x = self.sigmoid(self.linear4(x))return xmodel = Model()# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)epoch_list = []
loss_list = []# training cycle forward, backward, update
def train(epoch):for i, data in enumerate(train_loader, 0):inputs, labels = datay_pred = model(inputs)loss = criterion(y_pred, labels)optimizer.zero_grad()loss.backward()optimizer.step()return loss.item()def test():with torch.no_grad():y_pred = model(Xtest)y_pred_label = torch.where(y_pred>=0.5,torch.tensor([1.0]),torch.tensor([0.0]))acc = torch.eq(y_pred_label, Ytest).sum().item() / Ytest.size(0)print("test acc:", acc)if __name__ == '__main__':for epoch in range(10000):loss_val = train(epoch)print("epoch: ",epoch," loss: ",loss_val)epoch_list.append(epoch)loss_list.append(loss_val)test()plt.plot(epoch_list,loss_list)plt.title("Adam")plt.xlabel("Epoch")plt.ylabel("Loss")plt.savefig("./data/pytorch7_1.png")



简单的程序
 

import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader# prepare datasetclass DiabetesDataset(Dataset):def __init__(self, filepath):xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)self.len = xy.shape[0] # shape(多少行,多少列)self.x_data = torch.from_numpy(xy[:, :-1])self.y_data = torch.from_numpy(xy[:, [-1]])def __getitem__(self, index):return self.x_data[index], self.y_data[index]def __len__(self):return self.lendataset = DiabetesDataset('./dataset/diabetes.csv.gz')
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=0) #num_workers 多线程# design model using classclass Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.linear1 = torch.nn.Linear(8, 6)self.linear2 = torch.nn.Linear(6, 4)self.linear3 = torch.nn.Linear(4, 1)self.sigmoid = torch.nn.Sigmoid()def forward(self, x):x = self.sigmoid(self.linear1(x))x = self.sigmoid(self.linear2(x))x = self.sigmoid(self.linear3(x))return xmodel = Model()# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)# training cycle forward, backward, update
if __name__ == '__main__':for epoch in range(100):for i, data in enumerate(train_loader, 0): # train_loader 是先shuffle后mini_batchinputs, labels = datay_pred = model(inputs)loss = criterion(y_pred, labels)print(epoch, i, loss.item())optimizer.zero_grad()loss.backward()optimizer.step()

🌈我的分享也就到此结束啦🌈
如果我的分享也能对你有帮助,那就太好了!
若有不足,还请大家多多指正,我们一起学习交流!
📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!
感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!欢迎关注、关注!

这篇关于Pytorch深度学习实践笔记8(b站刘二大人)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008220

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

MySQL存储过程实践(in、out、inout)

《MySQL存储过程实践(in、out、inout)》文章介绍了数据库中的存储过程,包括其定义、优缺点、性能调校与撰写,以及创建和调用方法,还详细说明了存储过程的参数类型,包括IN、OUT和INOUT... 目录简述存储过程存储过程的优缺点优点缺点存储过程的创建和调用mysql 存储过程中的关键语法案例存储

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础