Python 全栈体系【四阶】(五十三)

2024-05-27 17:44

本文主要是介绍Python 全栈体系【四阶】(五十三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第五章 深度学习

十二、光学字符识别(OCR)

2. 文字检测技术

2.3 DB(2020)

DB全称是Differentiable Binarization(可微分二值化),是近年提出的利用图像分割方法进行文字检测的模型。前文所提到的模型,使用一个水平矩形框或带角度的矩形框对文字进行定位,这种定位方式无法应用于弯曲文字和不规范分布文字的检测。DB模型利用图像分割方法,预测出每个像素的类别(是文字/不是文字),可以用于任意形状的文字检测。如下图所示:

在这里插入图片描述

左图:原图;右图:检测结果,红色部分为预测成文字的像素区域,蓝色为非文字像素区域
2.3.1 基本流程

在这里插入图片描述

DB之前的一些基于图像分割的文字检测模型,识别原理如上图蓝色箭头所标记流程:

  • 第一步,对原图进行分割,预测出每个像素的属于文本/非文本区域的概率;

  • 第二步,根据第一步生成的概率,和某个固定阈值进行比较,产生一个二值化图;

  • 第三步,采用一些启发式技术(例如像素聚类)将像素分组为文本示例。

DB模型的流程如上图红色箭头所示流程:

  • 第一步,对原图进行分割,预测出每个像素的属于文本/非文本区域的概率。同时,预测一个threshold map(阈值图)

  • 第二步,采用第一步预测的概率和预测的阈值进行比较(不是直接和阈值比较,而是通过构建一个公式进行计算),根据计算结果,得到二值化图。在计算二值化图过程中,采用了一种二值化的近似函数,称为可微分二值化(Differentiable Binarization),在训练过程中,该函数完全可微分;

  • 第三步,根据二值化结果生成分割结果。

2.3.2 标签值生成

在这里插入图片描述

对于每个经过原始标记的样本(上图中第一张图像),采用Vatti clipping algorithm算法(一种用于计算多边形裁剪的算法)对多边形进行缩放,得到缩放后的多边形作为文字边沿(如上图中第二张图像绿色、蓝色多边形所示)。计算公式:

D = A ( 1 − r 2 ) L D = \frac{A(1 - r^2)}{L} D=LA(1r2)

其中,D是收缩放量,A为多边形面积,L为多边形周长,r是缩放系数,设置为0.4. 根据计算出的偏移量D进行缩小,得到缩小的多边形(第二张图像蓝色边沿所示);根据偏移量D放大,得到放大的多边形(第二张图像绿色边沿所示),两个边沿间的部分就是文字边界。

2.3.3 模型结构

Differentiable Binarization模型结构如下图所示:

在这里插入图片描述

模型经过卷积,得到不同降采样比率的特征图,经过特征融合后,产生一组分割概率图、一组阈值预测图,然后微分二值化算法做近似二值化处理,得到预测二值化图。传统的二值化方法一般采用阈值分割法,计算公式为:

B i , j = { 1 , i f P i , j ≥ t 0 , o t h e r w i s e (1) B_{i, j} = \begin{cases} 1,\quad if \ P_{i,j} \ge t \\ 0, \quad otherwise \end{cases} \tag{1} Bi,j={1,if Pi,jt0,otherwise(1)

上式描述的二值化方法是不可微分的,导致在训练期间无法与分割网络部分一起优化,为了解决这个问题,DB模型采用了近似阶跃函数的、可微分二值化函数。函数定义如下:

B ^ i , j = 1 1 + e − k ( P i , j − T i , j ) \hat B_{i, j} = \frac{1}{1+e^{-k(P_{i,j} - T_{i, j})}} B^i,j=1+ek(Pi,jTi,j)1

其中, P i , j P_{i,j} Pi,j表示预测概率, T i , j T_{i, j} Ti,j表示阈值,两个值相减后经过系数 K K K放大,当预测概率越大于阈值,则输出值越逼近1。

在这里插入图片描述

标准二值化函数与可微分二值化函数比较。SB:standard binarization其梯度在0值被截断无法进行有效地回传。DB:differentiable binarization是一个可微分的曲线
# 可谓分二值化函数示例
import mathP1 = 0.6 # 预测概率1
P2 = 0.4 # 预测概率2
T = 0.5  # 阈值
K = 50B1 = 1.0 / (1 + pow(math.e, -K * (P1 - T)))
print("B1:", B1) # B1:0.9933  趋近于1B2 = 1.0 / (1 + pow(math.e, -K * (P2 - T)))
print("B2:", B2) # B2:0.00669 趋近于0
2.3.4 损失函数

DB模型损失函数如下所示:

L = L s + α × L b + β × L t L = L_s + \alpha \times L_b + \beta \times L_t L=Ls+α×Lb+β×Lt

其中, L s L_s Ls是预测概率图的loss部分, L b L_b Lb是二值图的loss部分, α \alpha α β \beta β值分别设置为1和10. L s L_s Ls L b L_b Lb均采用二值交叉熵:

L s = L b = ∑ i ∈ S l y i l o g x i + ( 1 − y i ) l o g ( 1 − x i ) L_s = L_b = \sum_{i \in S_l} y_i log x_i + (1 - y_i) log(1-x_i) Ls=Lb=iSlyilogxi+(1yi)log(1xi)

上式中 S l S_l Sl是样本集合,正负样本比例为1:3.

L t Lt Lt指经过膨胀后的多边形区域中的像素预测结果和标签值之间的 L 1 L1 L1距离之和:

L t = ∑ i ∈ R d ∣ y i ∗ − x i ∗ ∣ L_t = \sum_{i \in R_d} |y_i ^* - x_i ^*| Lt=iRdyixi

R d R_d Rd值膨胀区域 G d G_d Gd内的像素索引, y i ∗ y_i ^* yi是阈值图的标签值。

2.3.5 涉及到的数据集

模型在以下6个数据集下进行了实验:

  • SynthText:合成数据集,包含80万张图像,用于模型训练
  • MLT-2017:多语言数据集,包含9种语言,7200张训练图像,1800张验证图像及9000张测试图像,用于模型微调
  • ICDAR 2015:包含1000幅训练图像和500幅测试图像,分辨率720*1280,提供了单词级别标记
  • MSRA-TD500:包含中英文的多语言数据集,300张训练图像及200张测试图像
  • CTW1500:专门用于弯曲文本的数据集,1000个训练图像和500个测试图像,文本行级别标记
  • Total-Text:包含各种形状的文本,及水平、多方向和弯曲文字,1255个训练图像和300个测试图像,单词级别标记

为了扩充数据量,论文采用了随机旋转(-10°~10°角度内)、随机裁剪、随机翻转等策略进行数据增强。

在这里插入图片描述

对各种形状的文本实例的一些可视化结果,包括弯曲文本、多向文本、垂直文本和长文本行。对于每个单元,右上角是阈值映射;右下角是概率图。
2.3.6 效果
  • 不同设置结果比较,“DConv”表示可变形卷积。“P”、“R”和“F”分别表示精度、召回率和F度量。

在这里插入图片描述

  • Total-Text数据集下测试结果,括号中的值表示输入图像的高度,“*”表示使用多尺度进行测试,“MTS”和“PSE”是Mask TextSpotter和PSENet的缩写

在这里插入图片描述

  • CTW1500数据集下测试结果。括号中的值表示输入图像的高度。

在这里插入图片描述

  • ICDAR 2015数据集下测试结果。括号中的值表示输入图像的高度,“TB”和“PSE”是TextBoxes++和PSENet的缩写。

在这里插入图片描述

  • MSRA-TD500数据集下测试结果。括号中的值表示输入图像的高度。

在这里插入图片描述

  • MLT-2017数据集下测试结果。“PSE”是PSENet的缩写。

在这里插入图片描述

2.3.7 结论
  • 能有效检测弯曲文本、不规范分布文本
  • 具有较好的精度和速度
  • 局限:不能处理文本中包含文本的情况

这篇关于Python 全栈体系【四阶】(五十三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008165

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数