Python 全栈体系【四阶】(五十三)

2024-05-27 17:44

本文主要是介绍Python 全栈体系【四阶】(五十三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第五章 深度学习

十二、光学字符识别(OCR)

2. 文字检测技术

2.3 DB(2020)

DB全称是Differentiable Binarization(可微分二值化),是近年提出的利用图像分割方法进行文字检测的模型。前文所提到的模型,使用一个水平矩形框或带角度的矩形框对文字进行定位,这种定位方式无法应用于弯曲文字和不规范分布文字的检测。DB模型利用图像分割方法,预测出每个像素的类别(是文字/不是文字),可以用于任意形状的文字检测。如下图所示:

在这里插入图片描述

左图:原图;右图:检测结果,红色部分为预测成文字的像素区域,蓝色为非文字像素区域
2.3.1 基本流程

在这里插入图片描述

DB之前的一些基于图像分割的文字检测模型,识别原理如上图蓝色箭头所标记流程:

  • 第一步,对原图进行分割,预测出每个像素的属于文本/非文本区域的概率;

  • 第二步,根据第一步生成的概率,和某个固定阈值进行比较,产生一个二值化图;

  • 第三步,采用一些启发式技术(例如像素聚类)将像素分组为文本示例。

DB模型的流程如上图红色箭头所示流程:

  • 第一步,对原图进行分割,预测出每个像素的属于文本/非文本区域的概率。同时,预测一个threshold map(阈值图)

  • 第二步,采用第一步预测的概率和预测的阈值进行比较(不是直接和阈值比较,而是通过构建一个公式进行计算),根据计算结果,得到二值化图。在计算二值化图过程中,采用了一种二值化的近似函数,称为可微分二值化(Differentiable Binarization),在训练过程中,该函数完全可微分;

  • 第三步,根据二值化结果生成分割结果。

2.3.2 标签值生成

在这里插入图片描述

对于每个经过原始标记的样本(上图中第一张图像),采用Vatti clipping algorithm算法(一种用于计算多边形裁剪的算法)对多边形进行缩放,得到缩放后的多边形作为文字边沿(如上图中第二张图像绿色、蓝色多边形所示)。计算公式:

D = A ( 1 − r 2 ) L D = \frac{A(1 - r^2)}{L} D=LA(1r2)

其中,D是收缩放量,A为多边形面积,L为多边形周长,r是缩放系数,设置为0.4. 根据计算出的偏移量D进行缩小,得到缩小的多边形(第二张图像蓝色边沿所示);根据偏移量D放大,得到放大的多边形(第二张图像绿色边沿所示),两个边沿间的部分就是文字边界。

2.3.3 模型结构

Differentiable Binarization模型结构如下图所示:

在这里插入图片描述

模型经过卷积,得到不同降采样比率的特征图,经过特征融合后,产生一组分割概率图、一组阈值预测图,然后微分二值化算法做近似二值化处理,得到预测二值化图。传统的二值化方法一般采用阈值分割法,计算公式为:

B i , j = { 1 , i f P i , j ≥ t 0 , o t h e r w i s e (1) B_{i, j} = \begin{cases} 1,\quad if \ P_{i,j} \ge t \\ 0, \quad otherwise \end{cases} \tag{1} Bi,j={1,if Pi,jt0,otherwise(1)

上式描述的二值化方法是不可微分的,导致在训练期间无法与分割网络部分一起优化,为了解决这个问题,DB模型采用了近似阶跃函数的、可微分二值化函数。函数定义如下:

B ^ i , j = 1 1 + e − k ( P i , j − T i , j ) \hat B_{i, j} = \frac{1}{1+e^{-k(P_{i,j} - T_{i, j})}} B^i,j=1+ek(Pi,jTi,j)1

其中, P i , j P_{i,j} Pi,j表示预测概率, T i , j T_{i, j} Ti,j表示阈值,两个值相减后经过系数 K K K放大,当预测概率越大于阈值,则输出值越逼近1。

在这里插入图片描述

标准二值化函数与可微分二值化函数比较。SB:standard binarization其梯度在0值被截断无法进行有效地回传。DB:differentiable binarization是一个可微分的曲线
# 可谓分二值化函数示例
import mathP1 = 0.6 # 预测概率1
P2 = 0.4 # 预测概率2
T = 0.5  # 阈值
K = 50B1 = 1.0 / (1 + pow(math.e, -K * (P1 - T)))
print("B1:", B1) # B1:0.9933  趋近于1B2 = 1.0 / (1 + pow(math.e, -K * (P2 - T)))
print("B2:", B2) # B2:0.00669 趋近于0
2.3.4 损失函数

DB模型损失函数如下所示:

L = L s + α × L b + β × L t L = L_s + \alpha \times L_b + \beta \times L_t L=Ls+α×Lb+β×Lt

其中, L s L_s Ls是预测概率图的loss部分, L b L_b Lb是二值图的loss部分, α \alpha α β \beta β值分别设置为1和10. L s L_s Ls L b L_b Lb均采用二值交叉熵:

L s = L b = ∑ i ∈ S l y i l o g x i + ( 1 − y i ) l o g ( 1 − x i ) L_s = L_b = \sum_{i \in S_l} y_i log x_i + (1 - y_i) log(1-x_i) Ls=Lb=iSlyilogxi+(1yi)log(1xi)

上式中 S l S_l Sl是样本集合,正负样本比例为1:3.

L t Lt Lt指经过膨胀后的多边形区域中的像素预测结果和标签值之间的 L 1 L1 L1距离之和:

L t = ∑ i ∈ R d ∣ y i ∗ − x i ∗ ∣ L_t = \sum_{i \in R_d} |y_i ^* - x_i ^*| Lt=iRdyixi

R d R_d Rd值膨胀区域 G d G_d Gd内的像素索引, y i ∗ y_i ^* yi是阈值图的标签值。

2.3.5 涉及到的数据集

模型在以下6个数据集下进行了实验:

  • SynthText:合成数据集,包含80万张图像,用于模型训练
  • MLT-2017:多语言数据集,包含9种语言,7200张训练图像,1800张验证图像及9000张测试图像,用于模型微调
  • ICDAR 2015:包含1000幅训练图像和500幅测试图像,分辨率720*1280,提供了单词级别标记
  • MSRA-TD500:包含中英文的多语言数据集,300张训练图像及200张测试图像
  • CTW1500:专门用于弯曲文本的数据集,1000个训练图像和500个测试图像,文本行级别标记
  • Total-Text:包含各种形状的文本,及水平、多方向和弯曲文字,1255个训练图像和300个测试图像,单词级别标记

为了扩充数据量,论文采用了随机旋转(-10°~10°角度内)、随机裁剪、随机翻转等策略进行数据增强。

在这里插入图片描述

对各种形状的文本实例的一些可视化结果,包括弯曲文本、多向文本、垂直文本和长文本行。对于每个单元,右上角是阈值映射;右下角是概率图。
2.3.6 效果
  • 不同设置结果比较,“DConv”表示可变形卷积。“P”、“R”和“F”分别表示精度、召回率和F度量。

在这里插入图片描述

  • Total-Text数据集下测试结果,括号中的值表示输入图像的高度,“*”表示使用多尺度进行测试,“MTS”和“PSE”是Mask TextSpotter和PSENet的缩写

在这里插入图片描述

  • CTW1500数据集下测试结果。括号中的值表示输入图像的高度。

在这里插入图片描述

  • ICDAR 2015数据集下测试结果。括号中的值表示输入图像的高度,“TB”和“PSE”是TextBoxes++和PSENet的缩写。

在这里插入图片描述

  • MSRA-TD500数据集下测试结果。括号中的值表示输入图像的高度。

在这里插入图片描述

  • MLT-2017数据集下测试结果。“PSE”是PSENet的缩写。

在这里插入图片描述

2.3.7 结论
  • 能有效检测弯曲文本、不规范分布文本
  • 具有较好的精度和速度
  • 局限:不能处理文本中包含文本的情况

这篇关于Python 全栈体系【四阶】(五十三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1008165

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以