Android Audio System线性音量和对数音量的转换

2024-05-27 12:08

本文主要是介绍Android Audio System线性音量和对数音量的转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Android的音频系统的代码中,应用程序对每个音频流的音量做出调整后,最终会转换为一个系数K,所有的音频数据在输出到硬件之前,都要乘以系数K,只要应用程序发出调整音量的调用,中间层的Audio System就会重新计算系数K的值。对应用程序来说,音量控制通常都是按照线性进行调整的,比如对于具有15级音量的音频流来说,我们预期每级的音量变化都是相当的,也就是说:从第5级调到第6级,和从第7级调到第8级,我们期望人耳可以感觉到同样大小的音量变化。但是,在Android的代码中,我们看到了计算系数K的公式,它相当奇怪,代码位于frameworks/base/media/libmedia/audiosystem.cpp中:

/*****************************************************************************************************/
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/*****************************************************************************************************/

[cpp] view plain copy
  1. // convert volume steps to natural log scale  
  2.   
  3. // change this value to change volume scaling  
  4. static const float dBPerStep = 0.50f;  
  5. // shouldn't need to touch these  
  6. static const float dBConvert = -dBPerStep * 2.302585093f / 20.0f;  
  7. static const float dBConvertInverse = 1.0f / dBConvert;  
  8.   
  9. float AudioSystem::linearToLog(int volume)  
  10. {  
  11.     // float v = volume ? exp(float(100 - volume) * dBConvert) : 0;  
  12.     // LOGD("linearToLog(%d)=%f", volume, v);  
  13.     // return v;  
  14.     return volume ? exp(float(100 - volume) * dBConvert) : 0;  
  15. }  
  16.   
  17. int AudioSystem::logToLinear(float volume)  
  18. {  
  19.     // int v = volume ? 100 - int(dBConvertInverse * log(volume) + 0.5) : 0;  
  20.     // LOGD("logTolinear(%d)=%f", v, volume);  
  21.     // return v;  
  22.     return volume ? 100 - int(dBConvertInverse * log(volume) + 0.5) : 0;  
  23. }  

要理解上面代码中的公式,我们先要了解人耳的声心理学模型。根据人耳的声心理学的研究,人耳对声音大小的感知程度并不是线性的,而是呈对数关系。对数形式的单位是dB,在音频领域,通常我们会定义一个标准电平V0,那么电平X的转换公式是:

dB=20log(X/V0);

例如:我们给喇叭输出满负荷最大音量时的电平是1V,如果有15级音量,如果按线性进行调整,1/15 = 66.6mV,我们就得到每级音量的调整量是:

66.6mV,133.2mV,200mV,......,866.8mV,933.4mV,1000mV;

如果按照这个步长进行调整,人耳感觉到的音量变化就不是连续的。

另一种方式是按对数进行调整,在数字音频领域,通常0dB代表最大音量,0dB意味着不对数据进行任何的变换处理,输出等于输入,所以20log(V0/V0)=20log(1)=0dB。这意味着最大音量以下的dB值为一个负数,现在我们把1V认为是0dB,最低音量是-28dB,那么对应15级音量的dB值就是:

-28dB,-26dB,-24dB,......,-4dB,-2dB,0dB;

对应的电平值是( 使用公式Vx=10^(dB/20)*V0 ):

39mV,50mV,63mV,......,630mV,794mV,1000mV;


                                      线性音量和对数音量的调整曲线

回到Android的代码中,它也使用了对数的调节方式,它先是定义了每次调节音量的步长值为0.5dB:

static const float dBPerStep = 0.50f;

然后他定义了一个计算用的中间常数:

static const float dBConvert = -dBPerStep * 2.302585093f / 20.0f;

这个一开始有点难于理解,尤其是奇怪的系数:2.302585093。所有这些定义都是为了得到用于与音频数据相乘的系数K,Android中有多种音频流,每种音频流的默认音量调节步数都不一样,有的是7步,有的是5步,有的是15步,为了便于计算的统一,计算前都会先把相应的步数映射为0-100步之间,因为步长已经定义为0.5dB,所以各级音量对应的dB数如下:

音量级别0123......979899100
dB数mute-49.5dB-49dB-48.5dB......-1.5dB1.0dB0.5dB0dB

很显然,知道了音量为哪个步数级别后,相应的dB值也会知道,那么我们要做的就是把dB值转换为系数K值,K值实际上就是公式dB=20log(X/V0)中的比值:X/V0,根据此公式反推,音量级别为volume对应的K值:

(1)          dB = -dBPerStep * ( 100 - volume );

又因为:

(2)          dB/20 = log(Vx/V0) = log(K);

把(1)式代入(2)式:

(3)          -dBPerStep * ( 100 - volume ) / 20 = log(K);

为了得到K,两边取以10为底的指数:

(4)           10 ^ ( -dBPerStep * ( 100 - volume ) / 20 ) = 10 ^ ( log(K) );

(5)            K = 10 ^ ( log(K) ) = 10 ^ ( -dBPerStep * ( 100 - volume ) / 20 ) ;

(6)             K = 10 ^ ( dBConvert * ( 100 - volume ) ) ;      // 令:dBConvert = -dBPerStep  / 20;

使用(6)式即可得到系数K,需要计算以10为底的幂,可是这与Android使用的计算公式有些差异,Andrioid使用的公式是:

(7)            exp(float(100 - volume) * dBConvert);

这是因为它没有使用以10为底的幂运算,而是使用以自然常数e为底的幂运算,因为:

(8)           ln( 10)  = 2.302585093;

我们把dBConvert 重新定义为-dBPerStep * 2.302585093/ 20后,式子(6)和式子(7)实际上是完全等价的。也就是说:

(9)           e^2.302585093 = e^ln(10) = 10;

这下终于知道2.302585093这个奇怪数字的来历啦!!从代码的注释中,我们可以知道,只要改变dBPerStep的大小,就可以决定系统的最小音量了:

最小音量 = -99 * dBPerStep;默认情况下是-49.5dB,K值为:0.00334965439;

至于最大软件数字音量,就是0dB,不能改变,要改就修改底层的音频驱动的硬件音量吧!!


这篇关于Android Audio System线性音量和对数音量的转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007430

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

Android DataBinding 与 MVVM使用详解

《AndroidDataBinding与MVVM使用详解》本文介绍AndroidDataBinding库,其通过绑定UI组件与数据源实现自动更新,支持双向绑定和逻辑运算,减少模板代码,结合MV... 目录一、DataBinding 核心概念二、配置与基础使用1. 启用 DataBinding 2. 基础布局

Android ViewBinding使用流程

《AndroidViewBinding使用流程》AndroidViewBinding是Jetpack组件,替代findViewById,提供类型安全、空安全和编译时检查,代码简洁且性能优化,相比Da... 目录一、核心概念二、ViewBinding优点三、使用流程1. 启用 ViewBinding (模块级

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c