第 8 章 机器人实体导航实现_路径规划(自学二刷笔记)

2024-05-27 10:12

本文主要是介绍第 8 章 机器人实体导航实现_路径规划(自学二刷笔记),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重要参考:

课程链接:https://www.bilibili.com/video/BV1Ci4y1L7ZZ

讲义链接:Introduction · Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程

 

9.3.5 导航实现05_路径规划

路径规划仍然使用 navigation 功能包集中的 move_base 功能包。

5.1编写launch文件

关于move_base节点的调用,模板如下:

<launch><node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen" clear_params="true"><rosparam file="$(find nav)/param/costmap_common_params.yaml" command="load" ns="global_costmap" /><rosparam file="$(find nav)/param/costmap_common_params.yaml" command="load" ns="local_costmap" /><rosparam file="$(find nav)/param/local_costmap_params.yaml" command="load" /><rosparam file="$(find nav)/param/global_costmap_params.yaml" command="load" /><rosparam file="$(find nav)/param/base_local_planner_params.yaml" command="load" /></node></launch>
5.2编写配置文件

可参考仿真实现。

1.costmap_common_params.yaml

该文件是move_base 在全局路径规划与本地路径规划时调用的通用参数,包括:机器人的尺寸、距离障碍物的安全距离、传感器信息等。配置参考如下:

#机器人几何参,如果机器人是圆形,设置 robot_radius,如果是其他形状设置 footprint
robot_radius: 0.12 #圆形
# footprint: [[-0.12, -0.12], [-0.12, 0.12], [0.12, 0.12], [0.12, -0.12]] #其他形状obstacle_range: 3.0 # 用于障碍物探测,比如: 值为 3.0,意味着检测到距离小于 3 米的障碍物时,就会引入代价地图
raytrace_range: 3.5 # 用于清除障碍物,比如:值为 3.5,意味着清除代价地图中 3.5 米以外的障碍物#膨胀半径,扩展在碰撞区域以外的代价区域,使得机器人规划路径避开障碍物
inflation_radius: 0.2
#代价比例系数,越大则代价值越小
cost_scaling_factor: 3.0#地图类型
map_type: costmap
#导航包所需要的传感器
observation_sources: scan
#对传感器的坐标系和数据进行配置。这个也会用于代价地图添加和清除障碍物。例如,你可以用激光雷达传感器用于在代价地图添加障碍物,再添加kinect用于导航和清除障碍物。
scan: {sensor_frame: laser, data_type: LaserScan, topic: scan, marking: true, clearing: true}
2.global_costmap_params.yaml

该文件用于全局代价地图参数设置:

global_costmap:global_frame: map #地图坐标系robot_base_frame: base_footprint #机器人坐标系# 以此实现坐标变换update_frequency: 1.0 #代价地图更新频率publish_frequency: 1.0 #代价地图的发布频率transform_tolerance: 0.5 #等待坐标变换发布信息的超时时间static_map: true # 是否使用一个地图或者地图服务器来初始化全局代价地图,如果不使用静态地图,这个参数为false.
3.local_costmap_params.yaml

该文件用于局部代价地图参数设置:

local_costmap:global_frame: odom #里程计坐标系robot_base_frame: base_footprint #机器人坐标系update_frequency: 10.0 #代价地图更新频率publish_frequency: 10.0 #代价地图的发布频率transform_tolerance: 0.5 #等待坐标变换发布信息的超时时间static_map: false  #不需要静态地图,可以提升导航效果rolling_window: true #是否使用动态窗口,默认为false,在静态的全局地图中,地图不会变化width: 3 # 局部地图宽度 单位是 mheight: 3 # 局部地图高度 单位是 mresolution: 0.05 # 局部地图分辨率 单位是 m,一般与静态地图分辨率保持一致
4.base_local_planner_params.yaml

基本的局部规划器参数配置,这个配置文件设定了机器人的最大和最小速度限制值,也设定了加速度的阈值。

TrajectoryPlannerROS:# Robot Configuration Parametersmax_vel_x: 0.5 # X 方向最大速度min_vel_x: 0.1 # X 方向最小速度max_vel_theta:  1.0 # min_vel_theta: -1.0min_in_place_vel_theta: 1.0acc_lim_x: 1.0 # X 加速限制acc_lim_y: 0.0 # Y 加速限制acc_lim_theta: 0.6 # 角速度加速限制# Goal Tolerance Parameters,目标公差xy_goal_tolerance: 0.10yaw_goal_tolerance: 0.05# Differential-drive robot configuration
# 是否是全向移动机器人holonomic_robot: false# Forward Simulation Parameters,前进模拟参数sim_time: 0.8vx_samples: 18vtheta_samples: 20sim_granularity: 0.05
5.3launch文件集成

如果要实现导航,需要集成地图服务、amcl 、move_base 等,集成示例如下:

<launch><!-- 设置地图的配置文件 --><arg name="map" default="nav.yaml" /><!-- 运行地图服务器,并且加载设置的地图--><node name="map_server" pkg="map_server" type="map_server" args="$(find nav)/map/$(arg map)"/><!-- 启动AMCL节点 --><include file="$(find nav)/launch/amcl.launch" /><!-- 运行move_base节点 --><include file="$(find nav)/launch/move_base.launch" /></launch>
5.4测试

1.执行相关launch文件,启动机器人并加载机器人模型:roslaunch mycar_start start.launch;

2.启动导航相关的 launch 文件:roslaunch nav nav.launch;

3.添加Rviz组件实现导航(参考仿真实现)。

 

9.3.6 导航与SLAM建图

与仿真环境类似的,也可以实现机器人自主移动的SLAM建图,步骤如下:

  1. 编写launch文件,集成SLAM与move_base相关节点;
  2. 执行launch文件并测试。
6.1编写launc文件

当前launch文件(名称自定义,比如:auto_slam.launch)实现,无需调用map_server的相关节点,只需要启动SLAM节点与move_base节点,示例内容如下:

<launch><!-- 启动SLAM节点 --><include file="$(find nav)/launch/gmapping.launch" /><!-- 运行move_base节点 --><include file="$(find nav)/launch/move_base.launch" />
</launch>
6.2测试

1.执行相关launch文件,启动机器人并加载机器人模型:roslaunch mycar_start start.launch;

2.然后执行当前launch文件:roslaunch nav auto_slam.launch;

3.在rviz中通过2D Nav Goal设置目标点,机器人开始自主移动并建图了;

4.最后可以使用 map_server 保存地图。

 

这篇关于第 8 章 机器人实体导航实现_路径规划(自学二刷笔记)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007179

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin