为什么要使用 99+,记一次 sql 优化(消息数量显示优化)

2024-05-27 07:32

本文主要是介绍为什么要使用 99+,记一次 sql 优化(消息数量显示优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://www.tuicool.com/articles/6fIbEvQ

一般在设计通知中心时,都会在入口处显示一个未读消息数,这样不仅可以醒目地告知用户有未读消息,还能让用户更容易从众多小图标中区分出通知中心的入口。比如 ucloud 控制台的顶栏:

我们网站的通知中心也一样,在入口同样加上了未读消息数的显示。

上线后平稳运行,以为可以就这样一直美下去。程序只要有人用,总会有出 bug 的那一天,最近高峰期经常会出现来自通知表的慢查询语句,仔细一查,原来就是统计未读消息数的语句,而且都是来自几个大用户。我们通知里分了多个组,每个组都有自己的一个未读数,sql 语句差不多是下面这样:

SELECT groupID, count(0) unreadCount FROM notification WHERE userID=xxx AND hasRead=0 GROUP BY groupID;

notification 表中已建立未读索引 unreads: userID + hasRead + groupID 的组合键。

由于我们网站大多是批量异步操作,即使做了消息合并,一天产生几十上百条通知也很正常,而且有的用户就是不喜欢标记通知为已读,这样日积月累,有的用户未读数已经上十万了。假设总记录行有 20 万,如果未读数为 50,建立一个未读的索引,效率会非常显著;但是未读数为 15 万,这时索引的意义也不大了。所以这个性能问题直到现在才暴露出来。

当未读数比较小时:结果集:

groupID | unreadCount  
0 | 23  
4 | 16

Explain:

id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra  
1 | SIMPLE | notification | ref | unreads | unreads | 5 | const,const | 39 | Using where; Using index

耗时:0.4ms(测试数据)

当未读数比较大时:结果集:

groupID | unreadCount  
0 | 23  
1 | 103234  
3 | 3032  
4 | 16

Explain:

id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra  
1 | SIMPLE | notification | ref | unreads | unreads | 4 | const | 69886 | Using where; Using index

耗时:38.9ms(测试数据)

由上可以看出,未读的记录行数直接影响该语句的性能。

问题出现总归要解决的,如何解决呢?最直接的办法就是看看其他产品是怎么做的。LG 同学提出,可以优化成像 QQ 未读消息数那样显示 99+ 呀。QQ 上有几个群,每天都有人在里面吹水斗表情,消息一会不看就 99+ 了。当初以为这样只是为了排版美观,或者避免特别大的数字给用户造成很大的心理负担,再者也不会有人关心未读的消息是 101 还是 102,所以索性显示 99+。即告诉用户有很多未读消息,又不会因显示一个特别大的数字吓到用户,这样一举两得。但这样似乎只是对用户更友好,对性能然并卵。这时他再次提出可以把 sql 语句拆开来写,一开始我是拒绝的,按照过往经验,多条语句查出结果合并肯定没有单条语句 GROUP BY 来的快。有时经验也会害死人,于是 LG 给出了下面的语句:

SELECT 0 AS groupID, count(1) AS unreadCount FROM (SELECT 1 FROM notification WHERE userID=xxx AND hasRead='0' AND groupID = 0 LIMIT 100) AS a  
UNION  
SELECT 1 AS groupID, count(1) AS unreadCount FROM (SELECT 1 FROM notification WHERE userID=xxx AND hasRead='0' AND groupID = 1 LIMIT 100) AS a  
UNION  
SELECT 2 AS groupID, count(1) AS unreadCount FROM (SELECT 1 FROM notification WHERE userID=xxx AND hasRead='0' AND groupID = 2 LIMIT 100) AS a  
UNION  
SELECT 3 AS groupID, count(1) AS unreadCount FROM (SELECT 1 FROM notification WHERE userID=xxx AND hasRead='0' AND groupID = 3 LIMIT 100) AS a  
UNION  
SELECT 4 AS groupID, count(1) AS unreadCount FROM (SELECT 1 FROM notification WHERE userID=xxx AND hasRead='0' AND groupID = 4 LIMIT 100) AS a

这条语句精妙就精妙在 LIMIT 100 ,使用未读索引并把结果集限定在 100 行以内,这个速度是非常快的。

优化后的时间:结果集:

groupID | unreadCount  
0 | 23  
1 | 100  
2 | 0  
3 | 100  
4 | 16

Explain:

id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra  
1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 23 | NULL  
2 | DERIVED | notification | ref | unreads | unreads | 6 | const,const,const | 23 | Using index  
3 | UNION | <derived4> | ALL | NULL | NULL | NULL | NULL | 100 | NULL  
4 | DERIVED | notification | ref | unreads | unreads | 6 | const,const,const | 73020 | Using index  
5 | UNION | <derived6> | ALL | NULL | NULL | NULL | NULL | 2 | NULL  
6 | DERIVED | notification | ref | unreads | unreads | 6 | const,const,const | 1 | Using index  
7 | UNION | <derived8> | ALL | NULL | NULL | NULL | NULL | 100 | NULL  
8 | DERIVED | notification | ref | unreads | unreads | 6 | const,const,const | 3208 | Using index  
9 | UNION | <derived10> | ALL | NULL | NULL | NULL | NULL | 16 | NULL  
10 | DERIVED | notification | ref | unreads | unreads | 6 | const,const,const | 16 | Using index  
NULL | UNION RESULT | <union1,3,5,7,9> | ALL | NULL | NULL | NULL | NULL | NULL | Using temporary

耗时:0.7ms(测试数据)

性能提升了几十倍,堵在胸口的这坨翔终于通了。这条语句的性能会因分组的数量所影响,但分组的数量是有限而且比较固定的,所以这个威胁不成立。

其实到这还没结束,还要结合前台,当 unreadCount 大于 99 时,就要显示 99+,优化后我们的通知中心未读提醒成了这样:

总结

优化不能单靠技术手段,有时产品上做下折中,优化的方法会简单很多。如果这次仅凭技术手段来优化,可能要引入缓存,或者冗余一个未读数,每次更新维护这个数字,这可能需要 2 ~ 3 天的工作量,而且还容易出 bug;而使用 99+ 的做法只花了不到 2 小时。另外也不能一直相信经验,经验有时也会犯错,而且会固化思维。


这篇关于为什么要使用 99+,记一次 sql 优化(消息数量显示优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006836

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.