Pytorch深度学习实践笔记5(b站刘二大人)

2024-05-27 06:04

本文主要是介绍Pytorch深度学习实践笔记5(b站刘二大人),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎬个人简介:一个全栈工程师的升级之路!
📋个人专栏:pytorch深度学习
🎀CSDN主页 发狂的小花
🌄人生秘诀:学习的本质就是极致重复!

视频来自【b站刘二大人】

目录

1 Linear Regression

2 Dataloader 数据读取机制

3 代码


1 Linear Regression


使用Pytorch实现,步骤如下:
PyTorch Fashion(风格)

  1. prepare dataset
  2. design model using Class ,前向传播,计算y_pred
  3. Construct loss and optimizer,计算loss,Optimizer 更新w
  4. Training cycle (forward,backward,update)




2 Dataloader 数据读取机制

 

  • Pytorch数据读取机制

一文搞懂Pytorch数据读取机制!_pytorch的batch读取数据-CSDN博客

  • 小批量数据读取
import torch  
import torch.utils.data as Data  BATCH_SIZE = 3x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)for epoch in range(3):  for step, (batch_x, batch_y) in enumerate(loader):  print('epoch', epoch,  '| step:', step,  '| batch_x', batch_x,  '| batch_y:', batch_y)  




3 代码

import torch
import torch.utils.data as Data 
import matplotlib.pyplot as plt 
# prepare datasetBATCH_SIZE = 3epoch_list = []
loss_list = []x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)#design model using class
"""
our model class should be inherit from nn.Module, which is base class for all neural network modules.
member methods __init__() and forward() have to be implemented
class nn.linear contain two member Tensors: weight and bias
class nn.Linear has implemented the magic method __call__(),which enable the instance of the class can
be called just like a function.Normally the forward() will be called 
"""
class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self).__init__()# (1,1)是指输入x和输出y的特征维度,这里数据集中的x和y的特征都是1维的# 该线性层需要学习的参数是w和b  获取w/b的方式分别是~linear.weight/linear.biasself.linear = torch.nn.Linear(1, 1)def forward(self, x):y_pred = self.linear(x)return y_predmodel = LinearModel()# construct loss and optimizer
# criterion = torch.nn.MSELoss(size_average = False)
criterion = torch.nn.MSELoss(reduction = 'sum')
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01) # training cycle forward, backward, update
for epoch in range(1000):  for iteration, (batch_x, batch_y) in enumerate(loader):  y_pred = model(batch_x) # forwardloss = criterion(y_pred, batch_y) # backward# print("epoch: ",epoch, " iteration: ",iteration," loss: ",loss.item())optimizer.zero_grad() # the grad computer by .backward() will be accumulated. so before backward, remember set the grad to zeroloss.backward() # backward: autograd,自动计算梯度optimizer.step() # update 参数,即更新w和b的值print("epoch: ",epoch, " loss: ",loss.item())epoch_list.append(epoch)loss_list.append(loss.data.item())if (loss.data.item() < 1e-7):print("Epoch: ",epoch+1,"loss is: ",loss.data.item(),"(w,b): ","(",model.linear.weight.item(),",",model.linear.bias.item(),")")breakprint('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())x_test = torch.tensor([[10.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)plt.plot(epoch_list,loss_list)
plt.title("SGD")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.savefig("./data/pytorch4.png")

  • 几种不同的优化器对应的结果:

Pytorch优化器全总结(三)牛顿法、BFGS、L-BFGS 含代码​

pytorch LBFGS_lbfgs优化器-CSDN博客​

scg.step() missing 1 required positiona-CSDN博客​



 



 



 



 

  • LFBGS 代码

import torch
import torch.utils.data as Data 
import matplotlib.pyplot as plt 
# prepare datasetBATCH_SIZE = 3epoch_list = []
loss_list = []x_data = torch.tensor([[1.0],[2.0],[3.0],[4.0],[5.0],[6.0],[7.0],[8.0],[9.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0],[8.0],[10.0],[12.0],[14.0],[16.0],[18.0]])dataset = Data.TensorDataset(x_data,y_data)loader = Data.DataLoader(  dataset=dataset,  batch_size=BATCH_SIZE,  shuffle=True,  num_workers=0  
)#design model using class
"""
our model class should be inherit from nn.Module, which is base class for all neural network modules.
member methods __init__() and forward() have to be implemented
class nn.linear contain two member Tensors: weight and bias
class nn.Linear has implemented the magic method __call__(),which enable the instance of the class can
be called just like a function.Normally the forward() will be called 
"""
class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self).__init__()# (1,1)是指输入x和输出y的特征维度,这里数据集中的x和y的特征都是1维的# 该线性层需要学习的参数是w和b  获取w/b的方式分别是~linear.weight/linear.biasself.linear = torch.nn.Linear(1, 1)def forward(self, x):y_pred = self.linear(x)return y_predmodel = LinearModel()# construct loss and optimizer
# criterion = torch.nn.MSELoss(size_average = False)
criterion = torch.nn.MSELoss(reduction = 'sum')
optimizer = torch.optim.LBFGS(model.parameters(), lr = 0.1) # model.parameters()自动完成参数的初始化操作,这个地方我可能理解错了loss = torch.Tensor([1000.])
# training cycle forward, backward, update
for epoch in range(1000):  for iteration, (batch_x, batch_y) in enumerate(loader):def closure():y_pred = model(batch_x) # forwardloss = criterion(y_pred, batch_y) # backward# print("epoch: ",epoch, " iteration: ",iteration," loss: ",loss.item())optimizer.zero_grad() # the grad computer by .backward() will be accumulated. so before backward, remember set the grad to zeroloss.backward() # backward: autograd,自动计算梯度return lossloss = closure()optimizer.step(closure) # update 参数,即更新w和b的值print("epoch: ",epoch, " loss: ",loss.item())epoch_list.append(epoch)loss_list.append(loss.data.item())if (loss.data.item() < 1e-7):print("Epoch: ",epoch+1,"loss is: ",loss.data.item(),"(w,b): ","(",model.linear.weight.item(),",",model.linear.bias.item(),")")breakprint('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())x_test = torch.tensor([[10.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)plt.plot(epoch_list,loss_list)
plt.title("LBFGS(lr = 0.1)")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.savefig("./data/pytorch4.png")

  • Rprop:

Rprop 优化方法(弹性反向传播),适用于 full-batch,不适用于 mini-batch,因而在 mini-batch 大行其道的时代里,很少见到。
优点:它可以自动调节学习率,不需要人为调节
缺点:仍依赖于人工设置一个全局学习率,随着迭代次数增多,学习率会越来越小,最终会趋近于0
结果:修改学习率和epoch均不能使其表现良好,无法满足1e-7精度条件下收敛



 

🌈我的分享也就到此结束啦🌈
如果我的分享也能对你有帮助,那就太好了!
若有不足,还请大家多多指正,我们一起学习交流!
📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!
感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!欢迎关注、关注!

这篇关于Pytorch深度学习实践笔记5(b站刘二大人)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006667

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

MySQL存储过程实践(in、out、inout)

《MySQL存储过程实践(in、out、inout)》文章介绍了数据库中的存储过程,包括其定义、优缺点、性能调校与撰写,以及创建和调用方法,还详细说明了存储过程的参数类型,包括IN、OUT和INOUT... 目录简述存储过程存储过程的优缺点优点缺点存储过程的创建和调用mysql 存储过程中的关键语法案例存储

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础