Rosenblatt感知器详解

2024-05-27 05:38
文章标签 详解 感知器 rosenblatt

本文主要是介绍Rosenblatt感知器详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文转载自:http://www.cnblogs.com/lanix/p/5003521.html

文中有些地方个人觉得有些错误(或许是自身理解不足),自己进行了修改,以绿色示之,可以对比原文一起阅读。

阅读之前需要注意的是:文中的w与x均视为列向量,,而为一矩阵,两者不可交换前后顺序。

在学习了机器学习十大算法之后,我决定将目光投向神经网络,从而攀登深度学习的高峰。这条险路的第一个拦路虎就是Rosenblatt感知器。为什么这么说呢?不仅是因为它开拓性的贡献——感知器是第一个从算法上完整描述的神经网络,而Rosenblatt感知器是感知器作为监督学习的第一个模型。还因为学习Rosenblatt感知器能够帮助了解神经元的结构、信息流的传递以及知识的学习和存储,从而打开看待问题的全新视角——模拟人脑解决问题。当然,仅仅如此的话,它只能说是可口的羔羊,谈不上拦路的猛虎。自然是在理解这一问题时遇到了难处:

1)Rosenblatt感知器为什么能收敛?《神经网络与机器学习》中的证明并不理想,它忽略了学习率和初始权重向量的影响;

2)学习率和初始权重向量对迭代次数的影响是什么?

3)它的更新过程与梯度下降法如此相似,不禁想问两者之间有何联系?

4)线性可分两类问题通常在寻找一个分割超平面,Rosenblatt感知器也不例外,能否将这个超平面可视化,从而帮助理解?

看!这真的是一个威风凛凛的猛虎,但它吓不倒人。下面开始我们的打虎过程。

 

认识这只虎——Rosenblatt感知器的结构

介绍感知器就不得不谈神经元的结构。神经元由突触、响应器、激活函数组成,顺序响应输入信号,最终获得输出结果。如图1所示,首先,输入信号的每一个分量由突触加权,再与偏置一起由响应器求和,之后通过激活函数获得输出。

响应器对突触加权后的信号和偏置求和,得到响应值:

常用的激活函数有阈值函数,Sigmoid函数和tanh函数。为纪念McCulloch和Pitts(1943)的开拓性工作,激活函数为阈值函数的神经元也被称为McCulloch-Pitts模型,此时:

图1 神经元结构

Rosenblatt感知器建立在McCulloch-Pitts神经元模型上,以解决线性可分的两类问题。两类记为{+1,-1},此时:

在神经元进行学习分类问题时,每一个样本都将作为一个刺激传入神经元。输入信号是每一个样本的特征,期望的输出是该样本的类别。当输出与类别不同时,我们将调整突触权值,直到每个样本的输出与类别相同。

   

老虎要发威——Rosenblatt感知器的更新过程

到目前为止,我们了解了Rosenblatt感知器的工作流程,但还没有解释它如何对于误分类的刺激调整权重值。在此之前,我们先定义输入的数据,方便后续的描述及推导。假设我们的样本采自m维空间Rm,每个样本由特征值和类别组成,记为X,于是:

当我们挑选样本x(k)k个刺激并不等于第k个样本,同一个样本可能反复成为刺激)刺激神经元时,有:

为了让上式更为简洁,我们将x(k)和wk增加一维:

 


此时:

神经元对刺激x^(k)的输出为:

 



到这里,我们完成了对Rosenblattt感知器的推导,其伪代码为:

 

老虎会防御——谜一样的感知器收敛原理

Rosenblatt感知器对于线性可分的两类问题总是有效的,但采用的方式与高斯分类器、逻辑回归、决策树还有SVM截然不同。那么能否保证它对所有线性可分的两类问题都能收敛?下面通过证明w在n足够大时不存在,即n有上限,对收敛性进行说明。

下界



上界




从上述第二个不等式来看,不等号左边为n的二次函数,且系数为正,而不等号右边为n的一次函数。当n足够大时,这个不等式是不成立的,也就是说n是有最大值的,因此w收敛

从第三个不等式来看,不等号左边是一个开口向上的一元二次方程,因此必存在n,使不等式不成立,因此该方法收敛。

后面这一章的内容感觉有些问题:

1)不等式本身可能有些问题,导致后面的推导出错;

2)这一章节试图通过说明初始权重向量和学习率对n的极限值的影响来解释两者对于收敛速度的影响。本人觉得这种说明不够严谨,因为n的极限值是我们通过不等式推算出的最坏的迭代情况,实际中可能(一般)不需要迭代这么多次。通过n的极限值缩小并不能说明实际迭代次数减少。

 

老虎怂了——初始权重向量和学习率的影响

 

老虎搬救兵——感知器背后的随机梯度下降法

如果学习过随机梯度下降法的话,我们就会发现Rosenblatt感知器与随机梯度下降法间的相似度。

如果我们对Rosenblatt感知器构造损失函数

因此,Rosenblatt感知器的迭代过程实际上是随机梯度下降法的一个简化。由于随机梯度下降法依期望收敛,Rosenblatt感知器也是收敛的。

   

老虎被参观——Rosenblatt感知器的可视化过程

因此,Rosenblatt感知器可理解为:1)将特征增加一维,新的一维为1,对应神经元中的偏置;2)增维后的特征与样本类别相乘,得到校正后的特征向量;3)寻找一个权重向量,其与所有校正后的特征向量的夹角小于90度。以一维空间的样本为例,

对特征空间进行升维和标签校正

权重向量的更新过程

当权重向量与特征向量夹角大于90度时,调整权重向量,减少两者夹角。最终使其对所有的特征向量夹角都小于90度,实现对样本的正确分类。

打虎心得——最后的总结

最开始学Rosenblatt感知器时,只是想把收敛原理搞清楚,但搞懂之后,有两点是之前没有预料到的:1)它隐含一个损失函数,而这个损失函数不需要像逻辑回归一样由一个logit函数进行转换;2)之前对线性可分停留在可以找到一个超平面,左边一类,右边一类。但对于超平面与样本之间有何联连并不清楚,现在明白两者对应m+1维空间两个夹角小于90度的超平面。

好了,打虎到此结束,有缘再会。

这篇关于Rosenblatt感知器详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006634

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input