Rosenblatt感知器详解

2024-05-27 05:38
文章标签 详解 感知器 rosenblatt

本文主要是介绍Rosenblatt感知器详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文转载自:http://www.cnblogs.com/lanix/p/5003521.html

文中有些地方个人觉得有些错误(或许是自身理解不足),自己进行了修改,以绿色示之,可以对比原文一起阅读。

阅读之前需要注意的是:文中的w与x均视为列向量,,而为一矩阵,两者不可交换前后顺序。

在学习了机器学习十大算法之后,我决定将目光投向神经网络,从而攀登深度学习的高峰。这条险路的第一个拦路虎就是Rosenblatt感知器。为什么这么说呢?不仅是因为它开拓性的贡献——感知器是第一个从算法上完整描述的神经网络,而Rosenblatt感知器是感知器作为监督学习的第一个模型。还因为学习Rosenblatt感知器能够帮助了解神经元的结构、信息流的传递以及知识的学习和存储,从而打开看待问题的全新视角——模拟人脑解决问题。当然,仅仅如此的话,它只能说是可口的羔羊,谈不上拦路的猛虎。自然是在理解这一问题时遇到了难处:

1)Rosenblatt感知器为什么能收敛?《神经网络与机器学习》中的证明并不理想,它忽略了学习率和初始权重向量的影响;

2)学习率和初始权重向量对迭代次数的影响是什么?

3)它的更新过程与梯度下降法如此相似,不禁想问两者之间有何联系?

4)线性可分两类问题通常在寻找一个分割超平面,Rosenblatt感知器也不例外,能否将这个超平面可视化,从而帮助理解?

看!这真的是一个威风凛凛的猛虎,但它吓不倒人。下面开始我们的打虎过程。

 

认识这只虎——Rosenblatt感知器的结构

介绍感知器就不得不谈神经元的结构。神经元由突触、响应器、激活函数组成,顺序响应输入信号,最终获得输出结果。如图1所示,首先,输入信号的每一个分量由突触加权,再与偏置一起由响应器求和,之后通过激活函数获得输出。

响应器对突触加权后的信号和偏置求和,得到响应值:

常用的激活函数有阈值函数,Sigmoid函数和tanh函数。为纪念McCulloch和Pitts(1943)的开拓性工作,激活函数为阈值函数的神经元也被称为McCulloch-Pitts模型,此时:

图1 神经元结构

Rosenblatt感知器建立在McCulloch-Pitts神经元模型上,以解决线性可分的两类问题。两类记为{+1,-1},此时:

在神经元进行学习分类问题时,每一个样本都将作为一个刺激传入神经元。输入信号是每一个样本的特征,期望的输出是该样本的类别。当输出与类别不同时,我们将调整突触权值,直到每个样本的输出与类别相同。

   

老虎要发威——Rosenblatt感知器的更新过程

到目前为止,我们了解了Rosenblatt感知器的工作流程,但还没有解释它如何对于误分类的刺激调整权重值。在此之前,我们先定义输入的数据,方便后续的描述及推导。假设我们的样本采自m维空间Rm,每个样本由特征值和类别组成,记为X,于是:

当我们挑选样本x(k)k个刺激并不等于第k个样本,同一个样本可能反复成为刺激)刺激神经元时,有:

为了让上式更为简洁,我们将x(k)和wk增加一维:

 


此时:

神经元对刺激x^(k)的输出为:

 



到这里,我们完成了对Rosenblattt感知器的推导,其伪代码为:

 

老虎会防御——谜一样的感知器收敛原理

Rosenblatt感知器对于线性可分的两类问题总是有效的,但采用的方式与高斯分类器、逻辑回归、决策树还有SVM截然不同。那么能否保证它对所有线性可分的两类问题都能收敛?下面通过证明w在n足够大时不存在,即n有上限,对收敛性进行说明。

下界



上界




从上述第二个不等式来看,不等号左边为n的二次函数,且系数为正,而不等号右边为n的一次函数。当n足够大时,这个不等式是不成立的,也就是说n是有最大值的,因此w收敛

从第三个不等式来看,不等号左边是一个开口向上的一元二次方程,因此必存在n,使不等式不成立,因此该方法收敛。

后面这一章的内容感觉有些问题:

1)不等式本身可能有些问题,导致后面的推导出错;

2)这一章节试图通过说明初始权重向量和学习率对n的极限值的影响来解释两者对于收敛速度的影响。本人觉得这种说明不够严谨,因为n的极限值是我们通过不等式推算出的最坏的迭代情况,实际中可能(一般)不需要迭代这么多次。通过n的极限值缩小并不能说明实际迭代次数减少。

 

老虎怂了——初始权重向量和学习率的影响

 

老虎搬救兵——感知器背后的随机梯度下降法

如果学习过随机梯度下降法的话,我们就会发现Rosenblatt感知器与随机梯度下降法间的相似度。

如果我们对Rosenblatt感知器构造损失函数

因此,Rosenblatt感知器的迭代过程实际上是随机梯度下降法的一个简化。由于随机梯度下降法依期望收敛,Rosenblatt感知器也是收敛的。

   

老虎被参观——Rosenblatt感知器的可视化过程

因此,Rosenblatt感知器可理解为:1)将特征增加一维,新的一维为1,对应神经元中的偏置;2)增维后的特征与样本类别相乘,得到校正后的特征向量;3)寻找一个权重向量,其与所有校正后的特征向量的夹角小于90度。以一维空间的样本为例,

对特征空间进行升维和标签校正

权重向量的更新过程

当权重向量与特征向量夹角大于90度时,调整权重向量,减少两者夹角。最终使其对所有的特征向量夹角都小于90度,实现对样本的正确分类。

打虎心得——最后的总结

最开始学Rosenblatt感知器时,只是想把收敛原理搞清楚,但搞懂之后,有两点是之前没有预料到的:1)它隐含一个损失函数,而这个损失函数不需要像逻辑回归一样由一个logit函数进行转换;2)之前对线性可分停留在可以找到一个超平面,左边一类,右边一类。但对于超平面与样本之间有何联连并不清楚,现在明白两者对应m+1维空间两个夹角小于90度的超平面。

好了,打虎到此结束,有缘再会。

这篇关于Rosenblatt感知器详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006634

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语