【深度学习】2.单层感知机

2024-05-27 05:36
文章标签 学习 深度 感知机 单层

本文主要是介绍【深度学习】2.单层感知机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标:

实现一个简单的二分类模型的训练过程,通过模拟数据集进行训练和优化,训练目标是使模型能够根据输入特征正确分类数据。

演示:

1.通过PyTorch生成了一个模拟的二分类数据集,包括特征矩阵data_x和对应的标签数据data_y。标签数据通过基于特征的线性组合生成,并转换成独热编码的形式。

import torch
# 从torch库中导入神经网络模块nn,用于构建神经网络模型
from torch import nn
# 导入torch.nn模块中的functional子模块,可用于访问各种函数,例如激活函数
import torch.nn.functional as Fn_item = 1000
n_feature = 2
learning_rate = 0.01
epochs = 100# 生成一个模拟的数据集,其中包括一个随机生成的特征矩阵data_x和相应生成的标签数据data_y。标签数据通过基于特征的线性组合生成,并且转换成独热编码的形式。# 设置随机数生成器的种子为123,通过设置随机种子,我们可以确保在每次运行代码时生成的随机数相同,这对于结果的可重现性非常重要。
torch.manual_seed(123)
# 生成一个随机数矩阵data_x,其中包含n_item行和n_feature列。矩阵中的元素是从标准正态分布(均值为0,标准差为1)中随机采样的。
data_x = torch.randn(size=(n_item, n_feature)).float()
# torch.where(...): 根据条件返回两个张量中相应位置的值。如果条件成立,将为0,否则为1。  long(): 用于将张量转换为Long型数据类型。
data_y = torch.where(torch.subtract(data_x[:, 0]*0.5, data_x[:, 1]*1.5)+0.02 > 0, 0, 1).long()
# 将标签数据data_y转换为独热编码形式,即将每个标签转换为一个相应长度的独热向量
data_y = F.one_hot(data_y)# print(data_x)
# print(data_y)

2.定义了一个简单的二分类模型BinaryClassificationModel,包含一个单层感知器(Single Perceptron)结构,其中使用了一个线性层和sigmoid激活函数,用于将输入特征映射到概率空间。

# 定义了一个简单的二分类模型,采用单层感知器的结构,包含一个线性层和sigmoid激活函数,用于将输入特征映射到概率空间。这样的模型可以用来对数据集进行二分类任务的预测。# 定义了一个名为BinaryClassificationModel的类,其继承自nn.Module类,这意味着这个类是一个PyTorch模型。
class BinaryClassificationModel(nn.Module):def __init__(self, in_feature):# 调用了父类nn.Module的构造函数,确保正确初始化模型。super(BinaryClassificationModel, self).__init__()"""single perception"""# 这行代码定义了模型的第一层,是一个线性层(Fully Connected Layer)。in_features参数指定输入特征的数量,out_features指定输出特征的数量,这里设置为2表示二分类问题。bias=True表示该层包含偏置项。self.layer_1 = nn.Linear(in_features=in_feature, out_features=2, bias=True)# 定义模型前向传播的方法,即输入数据x通过模型前向计算得到输出。def forward(self, x):# 输入数据x首先通过定义的线性层self.layer_1进行线性变换,然后通过F.sigmoid()函数进行激活函数处理。return F.sigmoid(self.layer_1(x))

3.创建了该二分类模型的实例model、使用随机梯度下降(SGD)优化器opt、以及二分类问题常用的损失函数BCELoss(Binary Cross Entropy Loss)。

4.在训练过程中,通过多个epoch和每个样本的批处理(在这里是一次处理一个样本),计算模型预测输出和真实标签之间的损失值,进行反向传播计算梯度,并更新模型参数以最小化损失函数。

# 完成对模型的训练过程,每个epoch中通过优化器进行参数更新,计算损失,反向传播更新梯度。最终我们会得到训练过程中每个epoch的损失值,并可以观察损失的变化情况。# 创建了一个二分类模型实例model,参数n_feature表示输入特征的数量。
model = BinaryClassificationModel(n_feature)
# 创建了一个随机梯度下降(SGD)优化器opt,用于根据计算出的梯度更新模型参数。
opt = torch.optim.SGD(model.parameters(), lr=learning_rate)
# 创建了一个二分类问题常用的损失函数BCELoss(Binary Cross Entropy Loss),用于衡量模型输出与真实标签之间的差异。
criteria = nn.BCELoss()for epoch in range(epochs):# 对每个样本进行训练。for step in range(n_item):x = data_x[step]y = data_y[step]# 梯度清零,避免梯度累加影响优化结果。opt.zero_grad()# 将输入特征x通过模型前向传播得到预测输出y_hat。unsqueeze(0)是因为我们的模型期望输入是(batch_size, n_feature)的形式。y_hat = model(x.unsqueeze(0))# 计算预测输出y_hat和真实标签y之间的损失值。loss = criteria(y_hat, y.unsqueeze(0).float())# 反向传播计算梯度。loss.backward()# 根据计算出的梯度更新模型参数。opt.step()print("Epoch: %03d, Loss: %.3f" % (epoch, loss.item()))

5.打印出每个epoch的序号和损失值,用于监控训练过程中损失值的变化情况。

这篇关于【深度学习】2.单层感知机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006620

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499