【深度学习】2.单层感知机

2024-05-27 05:36
文章标签 学习 深度 感知机 单层

本文主要是介绍【深度学习】2.单层感知机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标:

实现一个简单的二分类模型的训练过程,通过模拟数据集进行训练和优化,训练目标是使模型能够根据输入特征正确分类数据。

演示:

1.通过PyTorch生成了一个模拟的二分类数据集,包括特征矩阵data_x和对应的标签数据data_y。标签数据通过基于特征的线性组合生成,并转换成独热编码的形式。

import torch
# 从torch库中导入神经网络模块nn,用于构建神经网络模型
from torch import nn
# 导入torch.nn模块中的functional子模块,可用于访问各种函数,例如激活函数
import torch.nn.functional as Fn_item = 1000
n_feature = 2
learning_rate = 0.01
epochs = 100# 生成一个模拟的数据集,其中包括一个随机生成的特征矩阵data_x和相应生成的标签数据data_y。标签数据通过基于特征的线性组合生成,并且转换成独热编码的形式。# 设置随机数生成器的种子为123,通过设置随机种子,我们可以确保在每次运行代码时生成的随机数相同,这对于结果的可重现性非常重要。
torch.manual_seed(123)
# 生成一个随机数矩阵data_x,其中包含n_item行和n_feature列。矩阵中的元素是从标准正态分布(均值为0,标准差为1)中随机采样的。
data_x = torch.randn(size=(n_item, n_feature)).float()
# torch.where(...): 根据条件返回两个张量中相应位置的值。如果条件成立,将为0,否则为1。  long(): 用于将张量转换为Long型数据类型。
data_y = torch.where(torch.subtract(data_x[:, 0]*0.5, data_x[:, 1]*1.5)+0.02 > 0, 0, 1).long()
# 将标签数据data_y转换为独热编码形式,即将每个标签转换为一个相应长度的独热向量
data_y = F.one_hot(data_y)# print(data_x)
# print(data_y)

2.定义了一个简单的二分类模型BinaryClassificationModel,包含一个单层感知器(Single Perceptron)结构,其中使用了一个线性层和sigmoid激活函数,用于将输入特征映射到概率空间。

# 定义了一个简单的二分类模型,采用单层感知器的结构,包含一个线性层和sigmoid激活函数,用于将输入特征映射到概率空间。这样的模型可以用来对数据集进行二分类任务的预测。# 定义了一个名为BinaryClassificationModel的类,其继承自nn.Module类,这意味着这个类是一个PyTorch模型。
class BinaryClassificationModel(nn.Module):def __init__(self, in_feature):# 调用了父类nn.Module的构造函数,确保正确初始化模型。super(BinaryClassificationModel, self).__init__()"""single perception"""# 这行代码定义了模型的第一层,是一个线性层(Fully Connected Layer)。in_features参数指定输入特征的数量,out_features指定输出特征的数量,这里设置为2表示二分类问题。bias=True表示该层包含偏置项。self.layer_1 = nn.Linear(in_features=in_feature, out_features=2, bias=True)# 定义模型前向传播的方法,即输入数据x通过模型前向计算得到输出。def forward(self, x):# 输入数据x首先通过定义的线性层self.layer_1进行线性变换,然后通过F.sigmoid()函数进行激活函数处理。return F.sigmoid(self.layer_1(x))

3.创建了该二分类模型的实例model、使用随机梯度下降(SGD)优化器opt、以及二分类问题常用的损失函数BCELoss(Binary Cross Entropy Loss)。

4.在训练过程中,通过多个epoch和每个样本的批处理(在这里是一次处理一个样本),计算模型预测输出和真实标签之间的损失值,进行反向传播计算梯度,并更新模型参数以最小化损失函数。

# 完成对模型的训练过程,每个epoch中通过优化器进行参数更新,计算损失,反向传播更新梯度。最终我们会得到训练过程中每个epoch的损失值,并可以观察损失的变化情况。# 创建了一个二分类模型实例model,参数n_feature表示输入特征的数量。
model = BinaryClassificationModel(n_feature)
# 创建了一个随机梯度下降(SGD)优化器opt,用于根据计算出的梯度更新模型参数。
opt = torch.optim.SGD(model.parameters(), lr=learning_rate)
# 创建了一个二分类问题常用的损失函数BCELoss(Binary Cross Entropy Loss),用于衡量模型输出与真实标签之间的差异。
criteria = nn.BCELoss()for epoch in range(epochs):# 对每个样本进行训练。for step in range(n_item):x = data_x[step]y = data_y[step]# 梯度清零,避免梯度累加影响优化结果。opt.zero_grad()# 将输入特征x通过模型前向传播得到预测输出y_hat。unsqueeze(0)是因为我们的模型期望输入是(batch_size, n_feature)的形式。y_hat = model(x.unsqueeze(0))# 计算预测输出y_hat和真实标签y之间的损失值。loss = criteria(y_hat, y.unsqueeze(0).float())# 反向传播计算梯度。loss.backward()# 根据计算出的梯度更新模型参数。opt.step()print("Epoch: %03d, Loss: %.3f" % (epoch, loss.item()))

5.打印出每个epoch的序号和损失值,用于监控训练过程中损失值的变化情况。

这篇关于【深度学习】2.单层感知机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006620

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实