Redis学习笔记十一、虚拟内存

2024-05-27 03:32

本文主要是介绍Redis学习笔记十一、虚拟内存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介:

    和大多NoSQL数据库一样,Redis同样遵循了Key/Value数据存储模型。在有些情况下,Redis会将Keys/Values保存在内存中以提高数据查询和数据修改的效率,然而这样的做法并非总是很好的选择。鉴于此,我们可以将之进一步优化,即尽量在内存中只保留Keys的数据,这样可以保证数据检索的效率,而Values数据在很少使用的时候则可以被换出到磁盘。
    在实际的应用中,大约只有10%Keys属于相对比较常用的键,这样Redis就可以通过虚存将其余不常用的KeysValues换出到磁盘上,而一旦这些被换出的KeysValues需要被读取时,Redis则将其再次读回到主内存中。

二、应用场景:

    对于大多数数据库而言,最为理想的运行方式就是将所有的数据都加载到内存中,而之后的查询操作则可以完全基于内存数据完成。然而在现实中这样的场景却并不普遍,更多的情况则是只有部分数据可以被加载到内存中。
    Redis中,有一个非常重要的概念,即keys一般不会被交换,所以如果你的数据库中有大量的keys,其中每个key仅仅关联很小的value,那么这种场景就不是非常适合使用虚拟内存。如果恰恰相反,数据库中只是包含少量的keys,而每一个key所关联的value却非常大,那么这种场景对于使用虚存就再合适不过了。
    在实际的应用中,为了能让虚存更为充分的发挥作用以帮助我们提高系统的运行效率,我们可以将带有很多较小值的Keys合并为带有少量较大值的Keys。其中最主要的方法就是将原有的Key/Value模式改为基于Hash的模式,这样可以让很多原来的Keys成为Hash中的属性。

三、配置:

    1). 在配置文件中添加以下配置项,以使当前Redis服务器在启动时打开虚存功能。
    vm-enabled yes
    
    2). 在配置文件中设定Redis最大可用的虚存字节数。如果内存中的数据大于该值,则有部分对象被换出到磁盘中,其中被换出对象所占用内存将被释放,直到已用内存小于该值时才停止换出。
    vm-max-memory (bytes)
    Redis的交换规则是尽量考虑"最老"的数据,即最长时间没有使用的数据将被换出。如果两个对象的age相同,那么Value较大的数据将先被换出。需要注意的是,Redis不会将Keys交换到磁盘,因此如果仅仅keys的数据就已经填满了整个虚存,那么这种数据模型将不适合使用虚存机制,或者是将该值设置的更大,以容纳整个Keys的数据。在实际的应用,如果考虑使用Redis虚拟内存,我们应尽可能的分配更多的内存交给Redis使用,以避免频繁的换入换出。
    
    3). 在配置文件中设定页的数量及每一页所占用的字节数。为了将内存中的数据传送到磁盘上,我们需要使用交换文件。这些文件与数据持久性无关,Redis会在退出前会将它们全部删除。由于对交换文件的访问方式大多为随机访问,因此建议将交换文件存储在固态磁盘上,这样可以大大提高系统的运行效率。
    vm-pages 134217728
    vm-page-size 32    
    在上面的配置中,Redis将交换文件划分为vm-pages个页,其中每个页所占用的字节为vm-page-size,那么Redis最终可用的交换文件大小为:vm-pages * vm-page-size。由于一个value可以存放在一个或多个页上,但是一个页不能持有多个value,鉴于此,我们在设置vm-page-size时需要充分考虑Redis的该特征。
  
    4). Redis的配置文件中有一个非常重要的配置参数,即:
    vm-max-threads 4
    该参数表示Redis在对交换文件执行IO操作时所应用的最大线程数量。通常而言,我们推荐该值等于主机的CPU cores。如果将该值设置为0,那么Redis在与交换文件进行IO交互时,将以同步的方式执行此操作。
    对于Redis而言,如果操作交换文件是以同步的方式进行,那么当某一客户端正在访问交换文件中的数据时,其它客户端如果再试图访问交换文件中的数据,该客户端的请求就将被挂起,直到之前的操作结束为止。特别是在相对较慢或较忙的磁盘上读取较大的数据值时,这种阻塞所带来的影响就更为突兀了。然而同步操作也并非一无是处,事实上,从全局执行效率视角来看,同步方式要好于异步方式,毕竟同步方式节省了线程切换、线程间同步,以及线程拉起等操作产生的额外开销。特别是当大部分频繁使用的数据都可以直接从主内存中读取时,同步方式的表现将更为优异。
    如果你的现实应用恰恰相反,即有大量的换入换出操作,同时你的系统又有很多的cores,有鉴于此,你又不希望客户端在访问交换文件之前不得不阻塞一小段时间,如果确实是这样,我想异步方式可能更适合于你的系统。
    至于最终选用哪种配置方式,最好的答案将来自于不断的实验和调优。

这篇关于Redis学习笔记十一、虚拟内存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006397

相关文章

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot连接Redis集群教程

《SpringBoot连接Redis集群教程》:本文主要介绍SpringBoot连接Redis集群教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 依赖2. 修改配置文件3. 创建RedisClusterConfig4. 测试总结1. 依赖 <de

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例

Redis 配置文件使用建议redis.conf 从入门到实战

《Redis配置文件使用建议redis.conf从入门到实战》Redis配置方式包括配置文件、命令行参数、运行时CONFIG命令,支持动态修改参数及持久化,常用项涉及端口、绑定、内存策略等,版本8... 目录一、Redis.conf 是什么?二、命令行方式传参(适用于测试)三、运行时动态修改配置(不重启服务

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect