无畏并发: Rust Mutex的基本使用

2024-05-26 20:28

本文主要是介绍无畏并发: Rust Mutex的基本使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

并发是很多编程语言避不开的一块主要内容,主打一个无畏并发的Rust自然也面临这样的挑战。Rust中的Mutex提供了强大的同步原语,确保共享数据的线程安全,这篇文章中,我们会探讨Mutex的使用,从基础的用法到一些高阶内容。
在这里插入图片描述


1. Rust中的互斥锁

Mutex作为Rust中的一种互斥锁,它一次只允许一个线程访问共享资源。

  • 提供了一种同步可变数据访问的机制,防止数据竞争、确保线程安全;

  • 位于Rust标准库std::sync::Mutex中,支持对共享可变状态的安全并发访问。

  • 互斥锁允许一个线程在访问共享数据时获取锁,而其他线程必须等待该线程释放锁后才能访问共享数据,从而确保数据的安全性和一致性。


2. 基本用法体验

下面以使用Mutex保护共享数据为例演示Mutex的基础用法。

use std::{sync::Mutex, thread};
fn main() {let counter = Mutex::new(0);let handle = thread::spawn(move || {let mut value = counter.lock().unwrap();*value += 1;});handle.join().expect("thread panicked!");let value = counter.lock().unwrap();println!("Counter:{}", *value);
}

这段代码演示了Mutex的基本用法,但它是无法通过编译的,尽管如此,这里还是对上述代码进行解释一下:

  1. let counter = Mutex::new(0);

    • 在这行代码中,创建了一个名为 counterMutex,其中包含一个整数值初始为 0。这个 Mutex 将用于保护共享的整数值,以确保线程安全访问。
  2. let handle = thread::spawn(move || { ... });

    • 使用 thread::spawn 创建一个新线程,并在该线程中执行一个闭包。这个闭包中的内容将在新线程中运行。
    • move 关键字用于将 counter 的所有权转移给闭包,确保闭包可以在新线程中使用 counter
  3. let mut val = counter.lock().unwrap();

    • 在闭包中,通过调用 lock() 方法获取 counter 的锁,并使用 unwrap() 处理可能的锁获取失败的情况。这里的 val 是一个 MutexGuard,它允许我们安全地访问被 Mutex 保护的数据。
  4. *val += 1;

    • 在获取了 counter 的锁之后,对共享数据进行递增操作。
  5. handle.join().expect("thread panicked!");

    • 等待新线程执行完毕。join() 方法会阻塞当前线程,直到新线程执行完毕。
    • 如果新线程发生了 panic,expect() 方法会打印指定的错误信息。
  6. let val = counter.lock().unwrap();

    • 在主线程中,再次获取 counter 的锁,以确保安全地访问共享数据。
  7. println!("Counter:{}", *val);

    • 打印最终的共享数据值。

那么问题来了,为什么无法通过编译:

  • 在这段代码在编译阶段会出现 borrow of moved value 的错误,因为我们在 thread::spawn 的闭包中移动了 counter,而后又在闭包外部尝试再次使用它。

  • 为了解决这个问题,我们需要使用 Arc (原子引用计数) 来在多线程之间安全地共享 counter

use std::{sync::{Arc, Mutex},thread,
};
fn main() {let counter = Arc::new(Mutex::new(0));let counter_clone = Arc::clone(&counter);let handle = thread::spawn(move || {let mut value = counter_clone.lock().unwrap();*value += 1;});match handle.join() {Ok(_) => {let value = counter.lock().unwrap();println!("Counter: {}", *value);}Err(_) => {println!("Thread panicked!");}}
}

修复之后的代码中,使用了Arcmutex进行了调整,通过使用 Arc 来创建一个引用计数的 Mutex,并在闭包中使用 Arc 的克隆。这样可以确保在多线程环境中安全地共享 counter,避免了 borrow of moved value 的问题。同时使用match表达式进一步对错误进行了处理。


3. 多个锁的使用

有时,我们可能需要独立保护多个共享资源。 Rust 允许您使用多个锁来实现这一点:

use std::{sync::{Arc, Mutex},thread,
};fn main() {let cnt1 = Arc::new(Mutex::new(0));let cnt2 = Arc::new(Mutex::new(0));let cnt1_clone = Arc::clone(&cnt1);let handle1 = thread::spawn(move || {let mut value = cnt1_clone.lock().unwrap();*value += 1;});let cnt2_clone = Arc::clone(&cnt2);let handle2 = thread::spawn(move || {let mut value2 = cnt2_clone.lock().unwrap();*value2 += 1;});match handle1.join() {Ok(_) => {let value1 = cnt1.lock().unwrap();println!("cnt1:{}", *value1);}Err(_) => {println!("Thread panicked!");}}match handle2.join() {Ok(_) => {let value2 = cnt2.lock().unwrap();println!("cnt2:{}", *value2);}Err(_) => {println!("Thread panicked!");}}
}

这段代码演示了如何使用 ArcMutex 在 Rust 中实现多线程并发访问共享数据:

  1. 首先,通过 use 关键字引入了需要使用的标准库中的一些模块,包括 ArcMutexthread

  2. main 函数中,创建了两个计数器 cnt1cnt2,它们分别被包装在 ArcMutex 中。这样做是为了确保在多线程环境中安全地访问这两个计数器。

  3. 使用 Arc::clone(&cnt1)Arc::clone(&cnt2) 创建了两个 Arc 的克隆,分别赋值给 cnt1_clonecnt2_clone。这样做是为了将计数器的所有权移动到新的线程中。

  4. 通过 thread::spawn 创建了两个线程 handle1handle2,分别对 cnt1_clonecnt2_clone 所指向的计数器进行操作。在每个线程中,首先获取了计数器的锁,然后对计数器的值进行加一操作。

  5. 使用 handle1.join()handle2.join() 分别等待两个线程的执行结果。如果线程执行成功,就获取相应计数器的锁并打印计数器的值;如果线程执行失败(比如发生了 panic),则打印出相应的错误信息。


这篇关于无畏并发: Rust Mutex的基本使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005506

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他