#pragma pack 详解

2024-05-26 17:38
文章标签 详解 pragma pack

本文主要是介绍#pragma pack 详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#pragma pack(push,1)与#pragma pack(1)的区别

这是给编译器用的参数设置(注意,在编译阶段),有关结构体字节对齐方式设置, #pragma pack是指定数据在内存中的对齐方式。

#pragma pack (n)             //作用:C编译器将按照n个字节对齐。
#pragma pack ()              // 作用:取消自定义字节对齐方式。#pragma  pack (push,1)     //作用:是指把原来对齐方式设置压栈,并设新的对齐方式设置为1个字节对齐
#pragma pack(pop)           // 作用:恢复对齐状态

因此可见,加入push和pop可以使对齐恢复到原来状态,而不是编译器默认,可以说后者更优,但是很多时候两者差别不大。

如果#pramga pack(n)中的n大于结构体成员中任何一个成员所占用的字节数,则该n值无效。编译器会选取结构体中最大数据成员的字节数为基准进行对齐。

 

结构体为什么默认对齐

在没有设置多少字节对齐的时候,结构体会默认选取结构体中最大数据成员的字节数为基础进行对齐。编译器为什么会耗费资源呢?

对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问 一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对 数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那 么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数 据。显然在读取效率上下降很多。另外一层原因是:某些硬件平台只能从规定的地址处取某些特定类型的数据,否则会抛出硬件异常。

为什么使用#pragma pack

上面说了那么多了,人家结构体会采用默认的对齐方式,以空间换取CPU的读取效率,那为啥我们还要去修改其对齐方式呢?

原因是:一节省空间,二在某些场合使结构体更易于控制。

应用实例:

在网络协议编程中,经常会处理不同协议的数据报文。一种方法是通过指针偏移的方法来得到各种信息,但这样做不仅编程复杂,而且一旦协议有变化,程序修改起来也比较麻烦。在了解了编译器对结构空间的分配原则之后,我们完全可以利用这一特性定义自己的协议结构,通过访问结构的成员来获取各种信息。这样做,不仅简化了编程,而且即使协议发生变化,我们也只需修改协议结构的定义即可,其它程序无需修改,省时省力。下面以TCP协议首部为例,说明如何定义协议结构。其协议结构定义如下:

#pragma pack(1) // 按照1字节方式进行对齐
struct TCPHEADER 
{short SrcPort; // 16位源端口号short DstPort; // 16位目的端口号int SerialNo; // 32位序列号int AckNo; // 32位确认号unsigned char HaderLen : 4; // 4位首部长度unsigned char Reserved1 : 4; // 保留6位中的4位unsigned char Reserved2 : 2; // 保留6位中的2位unsigned char URG : 1;unsigned char ACK : 1;unsigned char PSH : 1;unsigned char RST : 1;unsigned char SYN : 1;unsigned char FIN : 1;short WindowSize; // 16位窗口大小short TcpChkSum; // 16位TCP检验和short UrgentPointer; // 16位紧急指针
}; 
#pragma pack()

有关位域的使用请参考https://blog.csdn.net/u010977122/article/details/89240784

 

以下是C/C++中不同数据类型所占用的内存的大小:

类型32系统位(字节)64位系统(字节)
char11
int4大多数4,少数8
short22
long48
float44
double88
指针48
结构体(struct)对齐问题对齐问题
联合体(union)成员中最长的成员成员中最长的成员
枚举(enum)根据数据类型根据数据类型

所以想判断当前系统是多少位的,最简单的做法就是看看指针占用几个字节。

这篇关于#pragma pack 详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005145

相关文章

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

SpringBoot请求参数传递与接收示例详解

《SpringBoot请求参数传递与接收示例详解》本文给大家介绍SpringBoot请求参数传递与接收示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录I. 基础参数传递i.查询参数(Query Parameters)ii.路径参数(Path Va

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例