argparse命令行参数的使用

2024-05-26 15:18

本文主要是介绍argparse命令行参数的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import argparsedef main():#设置一些参数parser = argparse.ArgumentParser()parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='设置使用哪些显卡')parser.add_argument('--model_config', default='config/model_config_small.json', type=str, required=False,help='选择模型参数')parser.add_argument('--tokenizer_path', default='cache/vocab_small.txt', type=str, required=False, help='选择词库')parser.add_argument('--raw_data_path', default='data/train.json', type=str, required=False, help='原始训练语料')parser.add_argument('--tokenized_data_path', default='data/tokenized/', type=str, required=False,help='tokenized语料存放位置')parser.add_argument('--raw', action='store_true', help='是否先做tokenize')parser.add_argument('--epochs', default=5, type=int, required=False, help='训练循环')parser.add_argument('--batch_size', default=8, type=int, required=False, help='训练batch size')parser.add_argument('--lr', default=1.5e-4, type=float, required=False, help='学习率')parser.add_argument('--warmup_steps', default=2000, type=int, required=False, help='warm up步数')parser.add_argument('--log_step', default=1, type=int, required=False, help='多少步汇报一次loss,设置为gradient accumulation的整数倍')parser.add_argument('--stride', default=768, type=int, required=False, help='训练时取训练数据的窗口步长')parser.add_argument('--gradient_accumulation', default=1, type=int, required=False, help='梯度积累')parser.add_argument('--fp16', action='store_true', help='混合精度')parser.add_argument('--fp16_opt_level', default='O1', type=str, required=False)parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False)parser.add_argument('--num_pieces', default=100, type=int, required=False, help='将训练语料分成多少份')parser.add_argument('--min_length', default=128, type=int, required=False, help='最短收录文章长度')parser.add_argument('--output_dir', default='model/', type=str, required=False, help='模型输出路径')parser.add_argument('--pretrained_model', default='', type=str, required=False, help='模型训练起点路径')parser.add_argument('--writer_dir', default='tensorboard_summary/', type=str, required=False, help='Tensorboard路径')parser.add_argument('--segment', action='store_true', help='中文以词为单位')parser.add_argument('--bpe_token', action='store_true', help='subword')parser.add_argument('--encoder_json', default="tokenizations/encoder.json", type=str, help="encoder.json")parser.add_argument('--vocab_bpe', default="tokenizations/vocab.bpe", type=str, help="vocab.bpe")args = parser.parse_args()print('args:\n' + args.__repr__())#设置完后接下来可以使用这些参数if args.segment:from tokenizations import tokenization_bert_word_level as tokenization_bertelse:from tokenizations import tokenization_bertos.environ["CUDA_VISIBLE_DEVICES"] = args.device  # 此处设置程序使用哪些显卡

   

required    - 必需参数,通常-f这样的选项是可选的,但是如果required=True那么就是必须的了 

1 sys.argv

如果脚本很简单或临时使用,没有多个复杂的参数选项,可以直接利用sys.argv将脚本后的参数依次读取(读进来的默认是字符串格式)。

import sys
print("输入的参数为:%s" % sys.argv[1])

命令行执行效果:

>python demo.py 1
输入的参数为:1

  

 使用介绍:

argparse.ArgumentParser()方法参数须知:一般我们只选择用descriptionprog=None     - 程序名description=None,    - help时显示的开始文字epilog=None,     - help时显示的结尾文字parents=[],        -若与其他参数的一些内容一样,可以继承formatter_class=argparse.HelpFormatter,     - 自定义帮助信息的格式prefix_chars='-',    - 命令的前缀,默认是‘-’fromfile_prefix_chars=None,     - 命令行参数从文件中读取argument_default=None,    - 设置一个全局的选项缺省值,一般每个选项单独设置conflict_handler='error',     - 定义两个add_argument中添加的选项名字发生冲突时怎么处理,默认处理是抛出异常add_help=True    - 是否增加-h/--help选项,默认是True)

  

 简单用法:

  • 创建 ArgumentParser() 对象
  • 调用 add_argument() 方法添加参数
  • 使用 parse_args() 解析添加的参数
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("square", help="请输入一个数字", type=int)
parser.add_argument("input_str", help="请输入一个字母", type=str)
args = parser.parse_args()
print(args.square ** 2)
print(args.input_str)

  

把上面的代码保存到test_argparse.py文件,

1)命令行运行时,不添加参数:在终端运行python3 test_argparse.py ,运行结果如下:

$python3 test_argparse.py 
usage: test_argparse.py [-h] square input_str
test_argparse.py: error: the following arguments are required: square, input_str  

2)命令行运行时加上-h ,查看帮助:执行python3 test_argparse.py -h,运行结果如下:

$ python3 test_argparse.py -h
usage: test_argparse.py [-h] square input_strpositional arguments:square      请输入一个数字input_str   请输入一个字母optional arguments:-h, --help  show this help message and exit 

  3) 命令行运行加上参数,按照提示加上一个数字,一个字母:执行python3 test_argparse.py 10 'hello world!' ,  运行结果如下

$python3 test_argparse.py 10 'hello world!'
100
hello world!  

4)如果输入的格式不正确,会提示类型不对,例如第1个参数输入一个字符串,运行结果如下:

$ python3 test_argparse.py 'abcd' 11
usage: test_argparse.py [-h] square input_str
test_argparse.py: error: argument square: invalid int value: 'abcd'

现在看下可选参数的用法,所谓可选参数,也就是命令行参数是可选的,废话少说,看下面例子:  

parser.add_argument("--square", help="display a square of a given number", type=int)
parser.add_argument("--cubic", help="display a cubic of a given number", type=int)

之前已经提到了用type参数就可以指定输入的参数类型。而这个type类型还可以表示文件操作的类型从而直接进行文件的读写操作。

parser.add_argument('file', type=argparser.FileType('r')) # 读取文件 
args = parser.parse_args() for line in args.file: print line.strip()

 可以设置默认值

一般情况下会设置一些默认参数从而不需要每次输入某些不需要变动的参数,利用default参数即可实现。

parser.add_argument('filename', default='text.txt')

 

2 argparse

如果参数很多,比较复杂,并且类型不统一,那么argparse可以很好的解决这些问题,下面一个实例解释了argparse的基本使用方法

import argparse
# description参数可以用于描述脚本的参数作用,默认为空
parser=argparse.ArgumentParser(description="A description of what the program does")
parser.add_argument('--toy','-t',action='store_true',help='Use only 50K samples of data')
parser.add_argument('--num_epochs',choices=[5,10,20],default=5,type=int,help='Number of epochs.')
parser.add_argument("--num_layers", type=int, required=True, help="Network depth.")args=parser.parse_args()
print(args)
print(args.toy,args.num_epochs,args.num_layers)

  

命令行执行效果:

>python demo.py --num_epochs 10 --num_layers 10
Namespace(num_epochs=10, num_layers=10, toy=False)
False 10 10

 

parser.add_argument('--toy','-t',action='store_true',help='Use only 50K samples of data')

--toy:为参数名称

-t:为参数别称
action='store_true':参数是否使用,如果使用则为True,否则为False

>python demo.py -t --num_epochs 10 --num_layers 10
Namespace(num_epochs=10, num_layers=10, toy=True)
True 10 10 # 对比和上次执行的区别

help:参数说明

parser.add_argument('--num_epochs',choices=[5,10,20],default=5,type=int,help='Number of epochs.')

choices:候选值,输出参数必须在候选值里面,否如会出现下面的结果:

>python demo.py -t --num_epochs 30 --num_layers 10
usage: demo.py [-h] [--toy] [--num_epochs {5,10,20}] --num_layers NUM_LAYERS
demo.py: error: argument --num_epochs: invalid choice: 30 (choose from 5, 10, 20)

default:默认值,如果不输入参数,则使用该默认值

>python demo.py -t  --num_layers 10
Namespace(num_epochs=5, num_layers=10, toy=True)
True 5 10

int:参数类型

  • 实例2
parser.add_argument("--num_layers", type=int, required=True, help="Network depth.")

required:为必选参数,如果不输入,则出现以下错误:

>python demo.py -t --num_epochs 10
usage: demo.py [-h] [--toy] [--num_epochs {5,10,20}] --num_layers NUM_LAYERS
demo.py: error: the following arguments are required: --num_layers 
  • 实例3
    -h:输出参数使用说明信息
>python demo.py -h
usage: demo.py [-h] [--toy] [--num_epochs {5,10,20}] --num_layers NUM_LAYERSA description of what the program doesoptional arguments:-h, --help            show this help message and exit--toy, -t             Use only 50K samples of data--num_epochs {5,10,20}Number of epochs.--num_layers NUM_LAYERSNetwork depth.

action='store_true'说明

a.py文件的代码如下:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--t', help=' ', action='store_true', default=False)config = parser.parse_args()print(config.t)

直接运行python a.py,输出结果False

运行python a.py --t,输出结果True

也就是说,action='store_true',只要运行时该变量有传参就将该变量设为True。

  

 

 

这篇关于argparse命令行参数的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1004834

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(