定积分求解过程是否变限问题 以及当换元时注意事项

2024-05-26 12:28

本文主要是介绍定积分求解过程是否变限问题 以及当换元时注意事项,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

定积分求解过程是否变限问题 

文字理解:

 实例理解:

易错点和易混点:

1:定积分中的换元指什么?

2: 不定积分中第一类换元法和第二类换元法的本质和区别

3: df(x)   ---->   df(x)这个过程对大家产生困扰

换元时注意事项:

1:换元必换限,同时要将 dx = f(t)dt 也更换

2:换元要判断新元要保证连续可导:

3:积分区间上单调的替换函数是必要的

4:偶次方根下开平方,要加绝对值

5:牛顿莱布尼茨公式只适用于定积分,当定积分区间内有瑕点(该点的函数值为无穷)


定积分求解过程是否变限问题 

文字理解:

       定积分换元有一个口诀:换字必换限(所以不换字就不换限)。

       理解:通过判断是否 引入一个新的变量替换原来的变量 来确定是否更换 积分限

        白话理解:你在积分中,如果一直用字母t,那么那个积分限当然还是t等于多少的积分限。但是一旦你在积分中,不要原来的字母t了,换成一个新的字母x,那么积分限当然要换成x等于多少了?。这就叫做,这就叫做换字必换限。不换字就不换限。明白了没有?

 实例理解:

来源:​​​​​​(1 封私信) 闲敲棋子落灯hua - 知乎 (zhihu.com)

        (1 封私信) 龚漫奇 - 知乎 (zhihu.com)

易错点和易混点:

1:定积分中的换元指什么?

        定积分中说的"换元"指的是引入新变量替换原变量

2: 不定积分中第一类换元法和第二类换元法的本质和区别

第一类换元法(凑微分):

第二类换元法:

通过这两个概念的引入,我们能清晰的认识到,第二类换元法的概念 与 定积分的换元的概念 是一 一对应的,故第二类换元法需要更换积分上下限。而第一类换元法的概念 与 定积分的换元的概念 并不是相同概念,故凑微分并不用更换积分上下限。

3: df(x)   ---->   df(x) 这个过程使大家产生困扰

定积分公式    \int_{a}^{b}u(x)df(x)

        当凑微分时会产生这样的过程  df(x)   ---->   df(x)  容易误导大家,让大家误以为是更换了积分变量,其实如果单单只是df(x)   ---->   dg(x) ,而u(x)对应的函数并未更换变量,此时并不表示更换积分变量。注 dx 也是 df(x)中的一种情况 当f(x) =x 时。

        若:定积分公式 \int_{a}^{b}u(x)df(x)  中 u(x)df(x) 经过一系类变化转换为  v(x)dg(x) 这个过程仍然并没有引入新的变量,变量仍是"x",不用更改积分限。刚好凑微分符合该条件,故凑微分不用修改积分上下限。

        若:定积分公式  \int_{a}^{b}u(x)df(x)  中u(x)df(x)经过一系列变换转换为v(t)dg(t)此时要根据变换过程及时更换积分上下限。第二类换元需要修改上下限。

注:一定要分清 凑微分法 和 第二类换元法 和 定积分的换元 在概念上的区别。

换元时注意事项:

1:换元必换限,同时要将 dx = f(t)dt 也更换

2:换元要判断新元要保证连续可导:

        例如原积分区间(-1,1),换元函数是 x = 1/t ,很明显当x = 0时 t是无穷,所有新元函数在0处为无穷间断点,不连续也不可导,故此时不能换元。

3:积分区间上单调的替换函数是必要的

        进行定积分的变量替换时,选择在积分区间上单调的替换函数是非常重要的。这可以确保替换过程中的一一对应性,避免积分上下限混淆,并简化积分计算过程。在实际操作中,务必检查替换函数的单调性和可逆性,以确保积分计算的正确性

4:偶次方根下开平方,要加绝对值

        换元后,很多情况下都是会出现平方项,特别是三角换元,当遇见偶次根号下开方一定要小心

5:牛顿莱布尼茨公式只适用于定积分,当定积分区间内有瑕点(该点的函数值为无穷)

        这个很少见,一般让你求定积分都是已经帮你筛选过瑕点区间不用很担心。除非题目问你:该积分是否能用牛顿莱布尼茨求。

这篇关于定积分求解过程是否变限问题 以及当换元时注意事项的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1004462

相关文章

Django HTTPResponse响应体中返回openpyxl生成的文件过程

《DjangoHTTPResponse响应体中返回openpyxl生成的文件过程》Django返回文件流时需通过Content-Disposition头指定编码后的文件名,使用openpyxl的sa... 目录Django返回文件流时使用指定文件名Django HTTPResponse响应体中返回openp

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright