医疗实体链接(标准化)论文解读 (附代码) A Lightweight Neural Model for Biomedical Entity Linking

本文主要是介绍医疗实体链接(标准化)论文解读 (附代码) A Lightweight Neural Model for Biomedical Entity Linking,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、动机

论文:https://arxiv.org/abs/2012.08844

代码:https://github.com/tigerchen52/Biomedical-Entity-Linking

医疗实体链接 (Biomedical Entity Linking) 把文档中发现的疾病、药物、手术名词(mention)映射到知识库(knowledge base)中的标准术语词。

这项任务其实是非常有挑战的,这是因为文档中出现的医疗词语存在着多种变化,比如缩写、同义词、词形态变化、词序、错别字等。

其次,知识库中的标准术语集规模不算小,少的几万个术语,多的几十万个。更麻烦的是,这些术语长得还非常像,难以区分。

最后,医疗知识库不像传统的知识库WikiData和YAGO,术语(或实体)的信息只有一个实体名字,像实体描述、实体属性等待信息都是没有的,这给医疗实体链接带来了很大的难度。
如下例子,对于输入“decreases in hemoglobin”, 我们可以从MedDRA疾病词库中找到至少四个候选实体,你能找到正确的术语是哪一个吗?(答案是第三个)

decreases in hemoglobin1. increase in hematocrit
2. changes in hemoglobin
3. haemoglobin decreased
4. decreases in platelets
5. ......

最近BERT模型在NLP各个任务上都取得了惊人的成绩,也有人使用它在这个任务上进行了尝试,也取得SOTA的结果。

但是BERT模型上百万的参数在某种程度上也限制了它在资源受限(resourece-limted)场景下的使用。

因此,作者提出了一个想法,是否能使用一个简单的模型解决这个问题,而且在准确率上又差的不多呢?

 

这篇论文就是从这个问题出发,具体来说这项工作贡献如下:

  1. 作者提出了一种简单而有效神经网络模型,在三个医疗实体链接任务上,这个模型与BERT在统计上并无显著差异
  2. 这个模型比BERT小23倍,推理时间少6.4倍
  3. 除此之外,作者还探索如何在这个任务上使用额外特征,其中包括先验知识(Prior)、上下文(Context)、实体一致性(Coherence)

二、方法

模型的框架图如上所示,首先进行预处理,将mention和实体名称转化成统一的格式,然后再从知识库中找到top-k个候选实体,最后对这些实体进行排序输出得分最高的一个作为这个输入mention的标准术语。

上图是文章中的排序模型,作者首先使用预训练word embedding表示单词,然后为了解决out-of-vocabulary和错别字的问题,增加了character embedding。

Alignment Layer用来捕捉另一个文本中相似的部分,使用交互的信息进行表示每个文本,这样能够丰富单个文本的表示,很大程度提升模型的能力。

然后使用一个CNN层去提取关键特征,最后将两个文本的表示拼接在一起送入一个两层的全连接网络,这样就能计算出一个base score了。

除此之外,这个模型还可以加入先验信息、上下文信息、一致性信息。

三、实验

从上表中可以看出,作者的简单的base模型与BERT非常接近,在NCBI数据集上还超过了BERT模型。 

在base模型上加入额外特征还能够得到一定收益。

下表是作者模型大小和推理时间,在这两个维度上,作者的base模型都是有显著的优势的。

 

这篇关于医疗实体链接(标准化)论文解读 (附代码) A Lightweight Neural Model for Biomedical Entity Linking的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003995

相关文章

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN