使用CNN进行情感分析(Sentiment Analysis)

2024-05-26 08:48

本文主要是介绍使用CNN进行情感分析(Sentiment Analysis),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、情感分析

情感分析是自然语言处理中很常见的任务,它的目的是识别出一段文本潜在的情感,是表扬还是批评,是支持还是反对。比如我们可以使用情感分析去分析社媒的评论,从而得到网友对某件事的看法,进一步分析可以得到舆论的趋势。大家都知道特朗普非常喜欢发Twitter,我们可以对推友们评论进行分析,看看他们是在骂特朗普还是在支持特朗普,然后把所有的评论汇总起来就能得到一个大概的特朗普是否能够连任的趋势了。总之情感分析的本质是一个文本分类的任务,在这里我们实现了一个CNN网络对IMDB数据集进行情感分析。完整代码

二、IMDB数据集

Large Moive Review Dataset通常指的就是IMDB数据集,这是由斯坦福的研究者收集自网站IMDB。这个数据集其实就是一些对电影的评论,一共包含两类,积极的评论(positive)和消极的评论(negative)。其中训练集和测试集各有25000条数据。

三、CNN情感分析

深度学习在NLP任务中有很广泛的作用,那怎样将CNN应用于情感分析呢?因为情感分析本质就是一个文本分类的任务,在这里我们使用一个经典的用于文本分类的CNN架构,如下图所示,首先使用一维卷积,所谓一维卷积就是尺寸为window size * embedding dimension的卷积。window size其实就是词的数量,如果window size等于2就是图中红色的filter,每次选取两个词。window size等于3的话就是图中黄色的部分,每次选取三个词。这样卷积的意义就是每次都能获取到一个n-gram特征,这与我们的直觉也是类似的。卷积之后再使用max-1-pooling,也就是选择这句话中最显著的词或词组作为下一层的结果。然后将这些关键词组合起来输入全连接层就可以得到分类结果了。更详细的CNN解释可以看这篇博客。CNN文本分类详解

下面介绍下如何使用Keras实现这个逻辑,首先载入IMDB数据集,选取词频最高的5000个词作为输入,其他的词都是0。然后再把句子的单词长度固定为500。

# load the dataset but only keep the top n words, zero the rest
top_words = 5000
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=top_words)
# pad dataset to a maximum review length in words
max_words = 500
x_train = sequence.pad_sequences(x_train, maxlen=max_words)
x_test = sequence.pad_sequences(x_test, maxlen=max_words)

 接下里创建conv1D + max-pooling的CNN模型。首先初始化一个embedding,为所有词随机一个词向量(这里也可以使用预训练的词向量,效果会更好)。然后使用Conv1D进行卷积,其中kernel_size这个参数就是我们前面所说的window size, 这里我们让它等于3,也就是每次取3个词,得到的是tri-gram特征。然后GlobalMaxPooling进行池化,最后使用全连接层得到一个值。这个值就代表属于哪一类的分数。优化的时候使用Adam优化器。

sentence = Input(batch_shape=(None, max_words), dtype='int32', name='sentence')
embedding_layer = Embedding(top_words, embedding_dims, input_length=max_words)
sent_embed = embedding_layer(sentence)
conv_layer = Conv1D(filters, kernel_size, padding='valid', activation='relu')
sent_conv = conv_layer(sent_embed)
sent_pooling = GlobalMaxPooling1D()(sent_conv)
sent_repre = Dense(250)(sent_pooling)
sent_repre = Activation('relu')(sent_repre)
sent_repre = Dense(1)(sent_repre)
pred = Activation('sigmoid')(sent_repre)
model = Model(inputs=sentence, outputs=pred)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

最后训练模型

# fit the model
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1,validation_data=(x_test, y_test))

最终模型在测试集上的准确率为88.64% 。完整代码

25000/25000 [==============================] - 25s 1ms/step - loss: 0.3455 - acc: 0.8420 - val_loss: 0.2775 - val_acc: 0.8815
Epoch 2/2
25000/25000 [==============================] - 24s 973us/step - loss: 0.1603 - acc: 0.9390 - val_loss: 0.2871 - val_acc: 0.8864
Accuracy: 88.64%

四、使用多窗口的CNN

前面我们使用的是windows size等于3的卷积,也就是每次取三个词,得到tri-gram特征。那要是觉得只用tri-gram还不够丰富,还想加入bi-gram或者更多类型的n-gram怎么办?那只要把Conv-1D这里改下就好了,代码如下。使用一个循环,假设kernel_size_list = [2,3,4],这代表我们会分别取2个词,3个词,4个词进行卷积,然后将池化的结果进行拼接,最后得到了更加丰富的特征。

# use multi window-size cnn
cnn_result = []
for kernel_size in kernel_size_list:conv_layer = Conv1D(filters, kernel_size, padding='valid', activation='relu')sent_conv = conv_layer(sent_embed)sent_pooling = GlobalMaxPooling1D()(sent_conv)cnn_result.append(sent_pooling)
cnn_result = concatenate(cnn_result)

也可以看到使用多窗口的卷积最终准确率达到了89.99%,与只使用窗口为3的CNN相比提高了1个多点,还是挺有效果的。完整代码

25000/25000 [==============================] - 77s 3ms/step - loss: 0.3345 - acc: 0.8483 - val_loss: 0.2592 - val_acc: 0.8941
Epoch 2/2
25000/25000 [==============================] - 73s 3ms/step - loss: 0.1555 - acc: 0.9409 - val_loss: 0.2462 - val_acc: 0.8999
Accuracy: 89.99%

Reference

https://machinelearningmastery.com/predict-sentiment-movie-reviews-using-deep-learning/

https://keras.io/examples/imdb_cnn/

https://blog.csdn.net/u010960155/article/details/81112351

这篇关于使用CNN进行情感分析(Sentiment Analysis)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003991

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式