SparkStreaming架构原理(详解)

2024-05-26 07:28

本文主要是介绍SparkStreaming架构原理(详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spark概述

在这里插入图片描述

SparkStreaming架构原理

在这里插入图片描述

Spark Streaming的架构主要由以下几个关键部分组成。

1.数据源接收器(Receiver

  • 执行流程开始于数据源接收阶段,其中接收器(Receiver)负责从外部数据源获取数据流。

  • 接收器可以连接到诸如Kafka、Flume、Kinesis等数据源,或直接通过网络套接字接收数据。
    在这里插入图片描述

  • 接收器的主要功能是接收数据并将其缓冲起来,然后传输给Spark集群进行处理。

2.微批次生成器(Micro-batch Generator

  • 将接收到的数据划分为小的微批次,每个微批次包含一段时间范围内的数据。
    在这里插入图片描述

  • 微批次生成器控制着微批次的生成速率,并确保数据按时到达处理流程。

3.离散化流(DStream

  • 每个微批次的数据被转换成一个DStream对象。

在这里插入图片描述

  • DStream是一系列连续的RDD(Resilient Distributed Dataset)的抽象,每个RDD包含一个微批次的数据。

在这里插入图片描述

4.转换操作(Transformations

  • 在DStream上执行一系列的转换操作,例如映射、过滤、聚合等,以实现所需的业务逻辑。
  • 转换操作是在微批次级别上进行的,即对每个微批次的数据执行相同的转换操作。

5.RDD生成器(RDD Generator

  • 转换操作生成的DStream会被转换成相应的RDD。
  • RDD是Spark中的基本数据抽象,代表可并行操作的数据集合。

6.计算引擎(Compute Engine

  • 生成的RDD会被提交给Spark引擎进行计算执行。
  • Spark引擎会根据RDD的依赖关系和转换操作构建执行计划,并将计算任务分配给集群中的工作节点执行。

7.结果输出器(Output Operations

  • 计算执行完成后,结果可以写入外部系统或存储介质中。
  • 输出可以是保存到文件系统、写入数据库、发送到消息队列等操作。
  • 输出操作通常在驱动器程序中定义,并在每个微批次处理完成后触发执行。

在这里插入图片描述

8.容错处理(Fault Tolerance

  • Spark Streaming具有内置的容错机制,可以处理节点故障或数据丢失的情况。
  • 容错主要依赖于Spark引擎的RDD血统(RDD lineage)和数据日志记录,以实现数据的可靠处理和恢复。

这篇关于SparkStreaming架构原理(详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003817

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (