AI原生嵌入式矢量模型数据库ChromaDB-部署与使用指南

本文主要是介绍AI原生嵌入式矢量模型数据库ChromaDB-部署与使用指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在人工智能大模型领域, 离不开NLP技术,在NLP中词向量是一种基本元素,如何存储这些元素呢? 可以使用向量数据库ChromeDB
5637557320fbfb3292307735f0b8acd53a791241.png@112w_112h.png

Chroma

Chroma 是 AI 原生开源矢量数据库。Chroma 通过为 LLM 提供知识、事实和技能,使构建 LLM 应用程序变得容易。同时也是实现大模型RAG技术方案的一种有效工具。
在这里插入图片描述

简介

  • Chrome提供以下能力:

    1. 存储嵌入类型数据(embeddings)和其元数据
    2. 嵌入(embed)文档和查询
    3. 对嵌入类型的检索
  • Chrome 的原则:

    1. 对用户的简单性,并保障开发效率
    2. 同时拥有较好的性能
  • Chroma 作为服务器运行,同时提供客户端的SDK(支持Java, Go,Python, Rust等多种语言)。

安装与运行

  1. 首先要确保有安装有Python运行环境
  2. 安装Chroma模块
    pip install chromadb
    
  3. 创建数据库存储目录
    mkdir db_data
    
  4. 运行Chroma服务并指定路径
    chroma run --path db_data
    

如图所示,Chroma服务就成功启动啦!😄
在这里插入图片描述

Chroma作为服务常态化运行

chromadb.service配置文件放在/etc/systemd/system/目录并用命令systemctl start chromadb启动服务即可。
附赠一份配置模板,具体参数按实际情况配置即可。

[Unit]
Description=ChromaDB Service
After=network-online.target[Service]
ExecStart=/root/anachonda3/bin/chroma run --path /chromadb/db_data
User=root
Group=root
Restart=always
RestartSec=3
export CHROMA_SERVER_HOST=127.0.0.1
Environment=CHROMA_SERVER_HTTP_PORT=8881
ANONYMIZED_TELEMETRY=False
[Install]
WantedBy=default.target

Python客户端使用指南

  1. 导入模块并创建数据库连接
    import chromadb
    chroma_client = chromadb.Client()
    # chroma_client = chromadb.HttpClient(host='localhost', port=8000)
    
  2. 创建数据库集合(collection)
    collection = chroma_client.create_collection(name="my_collection")
    #chroma_client = chromadb.PersistentClient(path="/path/to/save/to") # 设置持久化路径
    因为Chroma 在 url 中使用集合名称,因此命名有一些限制:
    • 名称的长度必须介于 3 到 63 个字符之间。
    • 名称必须以小写字母或数字开头和结尾,并且中间可以包含点、破折号和下划线。
    • 名称不得包含两个连续的点。
    • 名称不得是有效的 IP 地址。
  • 集合的一些便捷方法
# 返回集合中前10项的一个列表
collection.peek() 
# 返回集合中的项目个数
collection.count()
# 重命名集合
collection.modify(name="new_name") 
  1. 添加文档(documents)到集合(collection)中
    collection.add(
    embeddings=[[1.2, 2.3, 4.5], [6.7, 8.2, 9.2]],
    documents=["This is a document", "This is another document"],
    metadatas=[{"source": "my_source"}, {"source": "my_source"}],
    ids=["id1", "id2"]
    )
    
  2. 查询文档 n 个最相近的结果
    results = collection.query(
    query_texts=["This is a query document"],
    n_results=2
    )
    
  3. 便捷方法
    chroma_client.heartbeat() # 纳秒级心跳,确保与服务端连接状态
    chroma_client.reset() # 重置数据库,清除已有信息
    
查询集合

使用.query方法查询集合

collection.query(query_embeddings=[[11.1, 12.1, 13.1],[1.1, 2.3, 3.2], ...],n_results=10,where={"metadata_field": "is_equal_to_this"},where_document={"$contains":"search_string"}
)
更新集合数据

使用.update方法更新集合

collection.update(ids=["id1", "id2", "id3", ...],embeddings=[[1.1, 2.3, 3.2], [4.5, 6.9, 4.4], [1.1, 2.3, 3.2], ...],metadatas=[{"chapter": "3", "verse": "16"}, {"chapter": "3", "verse": "5"}, {"chapter": "29", "verse": "11"}, ...],documents=["doc1", "doc2", "doc3", ...],
)

使用upsert更新数据,若不存在则新增。

collection.upsert(ids=["id1", "id2", "id3", ...],embeddings=[[1.1, 2.3, 3.2], [4.5, 6.9, 4.4], [1.1, 2.3, 3.2], ...],metadatas=[{"chapter": "3", "verse": "16"}, {"chapter": "3", "verse": "5"}, {"chapter": "29", "verse": "11"}, ...],documents=["doc1", "doc2", "doc3", ...],
)
从集合中删除数据

使用delete方法删除数据

collection.delete(ids=["id1", "id2", "id3",...],where={"chapter": "20"}
)

总结

通过这次学习,了解到了使用ChromeDB的基本方法,真是太好啦。
c8e919a83f19aa615d0a24cb1e752a449561.gif


欢迎关注 公-众-号【编程之舞】,获取更多技术资源。
在这里插入图片描述

这篇关于AI原生嵌入式矢量模型数据库ChromaDB-部署与使用指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003688

相关文章

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

MySQL Workbench工具导出导入数据库方式

《MySQLWorkbench工具导出导入数据库方式》:本文主要介绍MySQLWorkbench工具导出导入数据库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录mysql Workbench工具导出导入数据库第一步 www.chinasem.cn数据库导出第二步

正则表达式r前缀使用指南及如何避免常见错误

《正则表达式r前缀使用指南及如何避免常见错误》正则表达式是处理字符串的强大工具,但它常常伴随着转义字符的复杂性,本文将简洁地讲解r的作用、基本原理,以及如何在实际代码中避免常见错误,感兴趣的朋友一... 目录1. 字符串的双重翻译困境2. 为什么需要 r?3. 常见错误和正确用法4. Unicode 转换的

Mysql数据库中数据的操作CRUD详解

《Mysql数据库中数据的操作CRUD详解》:本文主要介绍Mysql数据库中数据的操作(CRUD),详细描述对Mysql数据库中数据的操作(CRUD),包括插入、修改、删除数据,还有查询数据,包括... 目录一、插入数据(insert)1.插入数据的语法2.注意事项二、修改数据(update)1.语法2.有

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

ubuntu如何部署Dify以及安装Docker? Dify安装部署指南

《ubuntu如何部署Dify以及安装Docker?Dify安装部署指南》Dify是一个开源的大模型应用开发平台,允许用户快速构建和部署基于大语言模型的应用,ubuntu如何部署Dify呢?详细请... Dify是个不错的开源LLM应用开发平台,提供从 Agent 构建到 AI workflow 编排、RA

ubuntu16.04如何部署dify? 在Linux上安装部署Dify的技巧

《ubuntu16.04如何部署dify?在Linux上安装部署Dify的技巧》随着云计算和容器技术的快速发展,Docker已经成为现代软件开发和部署的重要工具之一,Dify作为一款优秀的云原生应用... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。它

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

Nginx部署React项目时重定向循环问题的解决方案

《Nginx部署React项目时重定向循环问题的解决方案》Nginx在处理React项目请求时出现重定向循环,通常是由于`try_files`配置错误或`root`路径配置不当导致的,本文给大家详细介... 目录问题原因1. try_files 配置错误2. root 路径错误解决方法1. 检查 try_f

Spring Validation中9个数据校验工具使用指南

《SpringValidation中9个数据校验工具使用指南》SpringValidation作为Spring生态系统的重要组成部分,提供了一套强大而灵活的数据校验机制,本文给大家介绍了Spring... 目录1. Bean Validation基础注解常用注解示例在控制器中应用2. 自定义约束验证器定义自