GEE批量导出逐日、逐月、逐季节和逐年的遥感影像(以NDVI为例)

2024-05-26 02:44

本文主要是介绍GEE批量导出逐日、逐月、逐季节和逐年的遥感影像(以NDVI为例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

影像导出

  • 1.逐日数据导出
  • 2.逐月数据导出
  • 3.季节数据导出
  • 4.逐年数据导出

  最近很多小伙伴们私信我,问我如何高效导出遥感数据,从逐日到逐季度,我都有一套自己的方法,今天就来和大家分享一下!
  🔍【逐日导出】:首先,逐日数据的导出其实很简单,只需要设置好时间参数,然后用For循环迭代,就可以轻松搞定。
  📅【逐月导出】:逐月数据稍微复杂一些,需要对月份进行分类,并且确保数据的连续性。
  📊【逐年导出】:逐年数据导出,关键在于数据的累积和汇总,通过设置年度参数,可以快速获取整年的数据。
  🌟【逐季度导出】:最后,我还额外整理了逐季度的导出方法,这对于需要季度分析的小伙伴们来说,绝对是个福音!
🌍🌍🌍如果你对这些方法感兴趣,或者在实际操作中遇到了困难,欢迎私信我,我会一一解答,让我们一起高效地处理遥感数据吧!

1.逐日数据导出

var imageCollection = ee.ImageCollection("MODIS/006/MOD13Q1");
var table = ee.FeatureCollection("users/cduthes1991/boundry/China_province_2019");
var roi = table.filter(ee.Filter.eq('provinces','hubei'));
Map.centerObject(roi,6.5)var styling = {color:"black",fillColor:"00000000"}
Map.addLayer(roi.style(styling),{},"geometry")var ndviVis = {min: 0,max: 8000,palette: ['ffffff', 'ce7e45', 'df923d', 'f1b555', 'fcd163', '99b718', '74a901','66a000', '529400', '3e8601', '207401', '056201', '004c00', '023b01','012e01', '011d01', '011301'],
};// ***************************************************************************************************
// 批量导出每幅影像
// ***************************************************************************************************
var imgCol = ee.ImageCollection("MODIS/061/MOD13Q1").filterDate('2022-1-1','2022-12-31').filterBounds(roi).select('NDVI').map(function(image){var imgsub = image;return image.clip(roi)//.multiply(0.0001)});
print(imgCol)// 创建一个函数来展示并导出图像
var showAndExportImage = function(image, index) {var date = ee.Date(image.get('system:time_start')).format('YYYY-MM-dd').getInfo();Map.addLayer(image.select('NDVI'), ndviVis, 'NDVI ' + date + ' (' + (index + 1) + ')', 0);Export.image.toDrive({image: image.select('NDVI'),description: 'NDVI_' + date + '_' + (index + 1),scale: 500,region: roi,maxPixels: 1e9});
};// 遍历图像集合并处理每幅图像
imgCol.toList(imgCol.size()).evaluate(function(imageList) {imageList.forEach(function(image, index) {var img = ee.Image(image.id).clip(roi);showAndExportImage(img, index);});
});

结果展示:
在这里插入图片描述

2.逐月数据导出

// ************************************************************************************************************
// 批量导出每月影像
// ************************************************************************************************************
var imgCol1 = ee.ImageCollection("MODIS/061/MOD13Q1").filterBounds(roi).select('NDVI').map(function(image) {return image.clip(roi);});var yearstart = 2022;
var yearend = 2023;
var monthstart = 1;
var monthend = 12;
for (var year = yearstart; year <= yearend; year++) {for (var month = monthstart; month <= monthend; month++) {var startDate = ee.Date.fromYMD(year, month, 1);var endDate = startDate.advance(1, 'month').advance(-1, 'day');var ndvi_month = imgCol1.filterDate(startDate, endDate).select('NDVI');var ndvi_mean = ndvi_month.median().clip(roi);var monthName = ee.Date(startDate).format('MMMM').getInfo();Map.addLayer(ndvi_mean, ndviVis, year + '_' + monthName + '_NDVI_median', 0);Export.image.toDrive({image: ndvi_mean,description: year + '_' + monthName + '_NDVI_median',folder: 'NDVI_Export',scale: 250,region: roi,maxPixels: 1e9,});}
}

结果展示:
在这里插入图片描述

3.季节数据导出

//************************************************************************************************************
// 批量导出每季度影像
//************************************************************************************************************
var imgCol2 = ee.ImageCollection("MODIS/061/MOD13Q1").filterBounds(roi).select('NDVI').map(function(image) {return image.clip(roi);});var yearstart = 2020;
var yearend = 2023;
var seasonDates = [{name: 'Spring', startMonth: 3, endMonth: 5},{name: 'Summer', startMonth: 6, endMonth: 8},{name: 'Autumn', startMonth: 9, endMonth: 11},{name: 'Winter', startMonth: 12, endMonth: 2}
];seasonDates.forEach(function(season) {for (var year = yearstart; year <= yearend; year++) {var startDate, endDate;if (season.startMonth === 12) { // 处理冬季跨年的情况startDate = ee.Date.fromYMD(year, season.startMonth, 1);endDate = ee.Date.fromYMD(year + 1, season.endMonth, 1).advance(1, 'month').advance(-1, 'day');} else {startDate = ee.Date.fromYMD(year, season.startMonth, 1);endDate = ee.Date.fromYMD(year, season.endMonth, 1).advance(1, 'month').advance(-1, 'day');}var ndvi_season = imgCol2.filterDate(startDate, endDate).select('NDVI');print('NDVI collection for ' + year + ' ' + season.name + ':', ndvi_season);if (ndvi_season.size().getInfo() === 0) {print('No data for ' + year + ' ' + season.name);continue;}var ndvi_mean = ndvi_season.median().clip(roi);Map.addLayer(ndvi_mean, ndviVis, year + '_' + season.name + '_NDVI_median', 0);Export.image.toDrive({image: ndvi_mean,description: year + '_' + season.name + '_NDVI_median',folder: 'NDVI_Export',scale: 250,region: roi,maxPixels: 1e9,});}
});

结果展示:
在这里插入图片描述

4.逐年数据导出

//************************************************************************************************************
// // 批量导出每年影像
//************************************************************************************************************
var imgCol3 = ee.ImageCollection("MODIS/061/MOD13Q1").filterBounds(roi).select('NDVI').map(function(image){var imgsub = image;return image.clip(roi)//.multiply(0.0001)});
print(imgCol)var yearstart = 2020;
var yearend = 2023;
for (var i = yearstart; i <= yearend; i++) {var ndvi_year = imgCol3.filterDate(i + '-01-01', i + '-12-31').select('NDVI');var ndvi_mean = ndvi_year.median().clip(roi);Map.addLayer(ndvi_mean, ndviVis, i + '_NDVI_median', 0);Export.image.toDrive({image: ndvi_mean,description: i + '_NDVI_median',folder: 'NDVI_Export',scale: 250,region: roi,maxPixels: 1e9,});
}

结果展示:
在这里插入图片描述

在这里插入图片描述

这篇关于GEE批量导出逐日、逐月、逐季节和逐年的遥感影像(以NDVI为例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003323

相关文章

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

Python批量替换多个Word文档的多个关键字的方法

《Python批量替换多个Word文档的多个关键字的方法》有时,我们手头上有多个Excel或者Word文件,但是领导突然要求对某几个术语进行批量的修改,你是不是有要崩溃的感觉,所以本文给大家介绍了Py... 目录工具准备先梳理一下思路神奇代码来啦!代码详解激动人心的测试结语嘿,各位小伙伴们,大家好!有没有想

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

shell脚本批量导出redis key-value方式

《shell脚本批量导出rediskey-value方式》为避免keys全量扫描导致Redis卡顿,可先通过dump.rdb备份文件在本地恢复,再使用scan命令渐进导出key-value,通过CN... 目录1 背景2 详细步骤2.1 本地docker启动Redis2.2 shell批量导出脚本3 附录总