3D 生成重建014-Bidiff使用二维和三维先验的双向扩散

2024-05-25 20:44

本文主要是介绍3D 生成重建014-Bidiff使用二维和三维先验的双向扩散,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3D 生成重建014-Bidiff使用二维和三维先验的双向扩散


文章目录

    • 0 论文工作
    • 1 论文方法
    • 2 效果

0 论文工作

大多数三维生成研究集中在将二维基础模型向上投影到三维空间中,要么通过最小化二维评分蒸馏采样(SDS)损失,要么通过对多视图数据集进行微调。由于缺乏显式的三维先验,这些方法经常导致几何异常和多视图不一致。近来研究人员试图通过直接在三维数据集上进行训练来改善三维物体的质量,其代价是生成的纹理质量较低,因为三维数据集中有限的纹理多样性。为了利用这两种方法的优势,作者提出了双向扩散(BiDiff),这是一个同时包含3D和2D的统一框架扩散过程中,二者分别服务于三维保真度和二维纹理丰富度。此外,由于一个简单的组合可能会产生不一致的生成结果,论文用bidiff把他们连接起来。
这篇论文旨在解决当前文本到三维生成方法的局限性,特别是几何异常和多视角不一致的问题,并提出一种名为 BiDiff (Bidirectional Diffusion) 的新方法,以生成高质量、细节丰富且三维一致的模型。
其实这个地方已经可以看到SyncDreamer和SyncMVD的味道了

1 论文方法

BiDiff 的核心思想是将预训练的二维和三维扩散模型结合起来,并利用双向引导机制来同步两个扩散过程,从而学习一个联合的二维和三维先验。
在这里插入图片描述
1方法概述:
混合表示: 使用 SDF (Signed Distance Field) 表示三维特征,使用多视角图像表示二维特征。
双向扩散: 分别训练一个三维扩散模型和一个二维扩散模型,并通过双向引导机制进行联合微调。
二维引导三维: 将二维扩散模型去噪后的多视角图像投影到三维空间,引导三维扩散模型的去噪过程。
三维引导二维: 将三维扩散模型去噪后的 SDF 渲染成多视角图像,引导二维扩散模型的去噪过程。
2. 优势:
高质量纹理: 利用预训练的二维扩散模型,BiDiff 可以生成比仅使用三维数据集训练的模型更丰富的纹理细节。
三维一致性: 通过双向引导机制,BiDiff 确保了生成的三维模型在不同视角下的一致性。
可控性: BiDiff 可以分别控制纹理和几何形状的生成,例如,在保持形状不变的情况下改变纹理,或在保持纹理风格不变的情况下改变形状。
高效性: 相比于基于优化的文本到三维生成方法,BiDiff 的生成速度更快。
3. 其他特点:
利用三维先验: BiDiff 使用 Shap-E 作为三维先验,并引入噪声以避免过度依赖先验模型。
与优化方法结合: BiDiff 的输出可以作为优化方法的初始化,进一步提升模型质量和效率。
4. 额外的分析:
创新性: BiDiff 的创新性主要体现在双向引导机制,它有效地将二维和三维扩散过程结合起来,并利用两个先验模型的优势。
局限性: 论文中没有与其他最新的文本到三维生成方法进行详细的比较,例如DreamFusion, ProlificDreamer等。
未来方向: 可以探索更强大的二维和三维扩散模型,以及更有效的引导机制,进一步提升生成质量和效率。

2 效果

在这里插入图片描述

这篇关于3D 生成重建014-Bidiff使用二维和三维先验的双向扩散的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002580

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删