编译器 编译过程 compiling 动态链接库 Linking 接口ABI LTO PGO inline bazel增量编译

本文主要是介绍编译器 编译过程 compiling 动态链接库 Linking 接口ABI LTO PGO inline bazel增量编译,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编译器 编译过程 compiling 动态链接库 Linking 接口ABI LTO PGO

Theory

  • Shared Library Symbol Conflicts (on Linux)

    • 从左往右查找:Note that the linker only looks further down the line when looking for symbols used by but not defined in the current lib.
  • Linux 下 C++so 热更新

  • ABI (Application Binary Interface)

    • 应用程序的二进制接口,对于一个二进制的动态库或者静态库而言,可以详细描述在其中的函数的调用方式,定义在其中的数据类型的大小,数据结构的内存布局方式等信息
    • ABI 信息 对不同操作系统、不同编译链版本、不同二进制库对应源码版本 有或大或小的差异,从而造成预编译二进制库的兼容性问题,导致 compile error 或 执行时coredump
  • 编译器有能力让不同 target 的 cpp 文件的不同编译选项,有区分地生效。但无法控制其它cpp文件对头文件的使用,因此头文件为主体的开源项目,经常不得不很小心地去处理各种使用情况。

Linking

linking with libraries: -lXXX

  • statically-linked library: libXXX.a(lib)
  • dynamically-linked library : libXXX.so(dll)
  • -I /foo/bar : 头文件路径 compile line
  • -L 库文件路径: link line

Separate Compilation: -c, 只产生object file, 不link, 后面联合link-editor

LTO (Link Time Optimization)
  • 本质想解决的问题:编译 a.cpp 的时候看不到 b.cpp,编译器做不了优化
  • 解决方法:翻译 a.cpp 代码成中间语言 (LLVM IR Bitcode),放到 a.o 里;链接阶段把它们都放在一起,一个大文件来做优化
  • 运行方式:linker调用编译器提供的plugin
  • 开启方式:-flto
GTC2022 - Automated Performance Improvement Using CUDA Link Time Optimization [S41595]
  • CUDA 5.0:separate compilation

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • LTO

    • how to use 如上图
    • Partial LTO,需要 execuable 支持 LTO
  • JIT LTO (just in time LTO)

    • linking is performed at runtime
    • Generation of LTO IR is either offline with nvcc, or at runtime with nvrtc
  • Use JIT LTO

    • 用法见下图
    • The CUDA math libraries (cuFFT, cuSPARSE, etc) are starting to use JIT LTO; see GTC Fall 2021 talk “JIT LTO Adoption in cuSPARSE/cuFFT: Use Case Overview”
      • indirect user callback 转化为 JIT LTO callback
      • another use case: configure the used kernels —> minimal library size
// Use nvrtc to generate the LTOIR (“input” is CUDA C++ string):
nvrtcProgram prog;
nvrtcCreateProgram(&prog, input, name, 0, nullptr, nullptr);
const char *options[2] = {"-dlto", "-dc"};
const nvrtcResult result = nvrtcCompileProgram(prog, 2, options);
size_t irSize;
nvrtcGetNVVMSize(prog, &irSize);
char *ltoIR = (char*)malloc(irSize);
nvrtcGetNVVM(prog, ltoIR); // returns LTO IR// LTO inputs are then passed to cuLink* driver APIs, so linking is performed at runtime
CUlinkState state;
CUjit_option jitOptions[] = {CUjit_option::CU_JIT_LTO};
void *jitOptionValues[] = {(void*) 1};
cuLinkCreate(1, jitOptions, jitOptionValues, &state);
cuLinkAddData(state, CUjitInputType::CU_JIT_INPUT_NVVM,
ltoIR, irSize, name, 0, NULL, NULL);
cuLinkAddData( /* another input */);
size_t size;
void *linkedCubin;
cuLinkComplete(state, linkedCubin, &size);
cuModuleLoadData(&mod, linkedCubin);// Math libraries hide the cuLink details in their CreatePlan APIs.
  • LTO WITH REFERENCE INFORMATION
    • Starting in CUDA 11.7, nvcc will track host references to device code, which LTO can use to remove unused code.
    • JIT LTO needs user to tell it this information, so new cuLinkCreate options:
      • CU_JIT_REFERENCED_KERNEL_NAMES
      • CU_JIT_REFERENCED_VARIABLE_NAMES
      • CU_JIT_OPTIMIZE_UNUSED_DEVICE_VARIABLES
      • The *NAMES strings use implicit wildcards, so “foo” will match a mangled name like “Z3fooi”.
__device__ int array1[1024];
__device__ int array2[256];
__global__ void kernel1 (void) {
… array1[i]…
}
__global__ void kernel2 (void) {
… array2[i]…
}
….
kernel2<<<1,1>>>(); // host code launches kernel2
  • 收益来源
    • Much of the speedup comes from cross-file inlining, which then helps keep the data in registers.
    • Seeing the whole callgraph also helps to remove any dead code.
  • References:
    • https://developer.nvidia.com/blog/improving-gpu-app-performance-with-cuda-11-2-device-lto/ – offline LTO
    • https://developer.nvidia.com/blog/discovering-new-features-in-cuda-11-4/ – JIT LTO
    • https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#optimization-of-separate-compilation – nvcc
    • https://docs.nvidia.com/cuda/nvrtc/index.html – nvrtc
    • https://docs.nvidia.com/cuda/nvrtc/index.html – cuLink APIs
    • https://docs.nvidia.com/cuda/nvrtc/index.html – compatibility guarantees
    • Application paper
PGO (Profile Guided Optimization)

PGO(Profile Guided Optimization)是一种代码优化技术,它根据程序运行时的行为来优化代码。以下是关于PGO的详细介绍:

工作原理:PGO的基本思想是在程序运行时对代码进行测量,并使用这些测量数据来优化代码。例如,如果某个函数在运行时经常被调用,则可以使用PGO优化来使这个函数的执行速度更快。PGO通过缩小代码大小、减少分支错误预测和重新组织代码布局来减少指令缓存问题,从而提高应用程序性能。
工作阶段:PGO优化通常包含三个阶段或步骤。首先,编译器从源代码和编译器的特殊代码创建并链接插桩程序。然后,运行检测的可执行文件,每次执行检测代码时,检测程序都会生成一个动态信息文件,该文件用于最终编译。最后,在第二次编译时,动态信息文件将合并到摘要文件中。使用此文件中的配置文件信息摘要,编译器尝试优化程序中旅行最频繁的路径的执行。
应用场景:PGO特别适合于大型复杂项目,因为当项目代码量大且复杂时,手动寻找性能问题变得困难,而PGO可以快速定位问题点。此外,对于性能敏感应用,如实时性要求高的游戏引擎、数据库系统或科学计算应用,PGO的优化效果可能更为显著。同时,PGO还可以集成到自动化测试和构建流程中,每次迭代后自动分析性能变化,确保优化方向正确。
工具支持:PGO优化可以通过使用编译器工具链来实现,例如GCC和Clang。这些工具可以通过命令行或者集成开发环境(IDE)进行使用。同时,有一些专门的工具如PGOAnalyzer,它提供了跨平台支持、易用性、深度洞察和开源社区等优势,可以帮助开发者更好地利用PGO优化技术。

C++

  • 常用编译宏
    • inline
      • inline 的坏处:代码变多了,变量变多了,可能寄存器不够分配了,只能偷内存,性能变差,尤其是发生在 loop 中
      • 编译器基本无视普通的 inline 关键字,根据自己的决策来做,内部有 cost model 评判 inline 是否有收益
      • 如果一个inline会在多个源文件中被用到,那么必须把它定义在头文件中,否则会找不到符号
#pragma once#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x)<

这篇关于编译器 编译过程 compiling 动态链接库 Linking 接口ABI LTO PGO inline bazel增量编译的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001759

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MybatisPlus service接口功能介绍

《MybatisPlusservice接口功能介绍》:本文主要介绍MybatisPlusservice接口功能介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录Service接口基本用法进阶用法总结:Lambda方法Service接口基本用法MyBATisP

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Java中的Closeable接口及常见问题

《Java中的Closeable接口及常见问题》Closeable是Java中的一个标记接口,用于表示可以被关闭的对象,它定义了一个标准的方法来释放对象占用的系统资源,下面给大家介绍Java中的Clo... 目录1. Closeable接口概述2. 主要用途3. 实现类4. 使用方法5. 实现自定义Clos