3D 生成重建011-LucidDreamer 优化SDS过平滑结果的一种探索

2024-05-25 14:12

本文主要是介绍3D 生成重建011-LucidDreamer 优化SDS过平滑结果的一种探索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3D 生成重建011-LucidDreamer 优化SDS过平滑结果的一种探索


文章目录

    • 0论文工作
    • 1论文方法
    • 2 效果

0论文工作

文本到3D生成的最新进展标志着生成模型的一个重要里程碑,为在各种现实场景中创建富有想象力的3D资产打开了新的可能性。虽然最近在文本到3D生成方面的进展显示出了希望,但它们在渲染详细和高质量的3D模型方面往往不足。这个问题特别普遍,因为有许多方法都可以使用蒸馏取样(SDS)。本文指出了SDS的一个明显缺陷,即它给三维模型带来了不一致和低质量的更新方向,导致了过度更新平滑作用为了解决这个问题,我们提出了一种新的方法,称为间隔分数匹配(ISM)。ISM采用确定性扩散轨迹,并利用基于区间的分数匹配部分过度平滑。此外,我们将**三维高斯溅(3D GS)**合并到我们的文本到三维生成管道中。大量的实验表明,我们的模型在很大程度上优于最先进的技术质量和培训效率。
LucidDreamer 旨在解决从文本提示生成高保真三维形状的挑战。该论文指出了现有文本到三维方法的关键局限性,特别是它们难以在样本质量和多样性之间取得平衡。LucidDreamer 以区间得分匹配 (ISM) 为中心的新方法,用于三维生成的扩散模型,从而缓解了这些问题。实际上这种sds相减在magic123和sparsefusion等3d生成都用了相似的技巧,只不过不同作者选择了不同的解释角度。甚至在纹理生成也使用了类似技巧。

1论文方法

  1. 现有方法存在的问题:
    多样性有限: 许多文本到三维模型优先考虑生成与文本一致的合理形状,这通常会导致多样性低和输出重复。
    质量和多样性之间的权衡: 在高保真度细节和生成形状的广泛性之间取得平衡是一项重大挑战。
    下图是论文的结构图,可以发现论文的结构上与SDS优化流派的方法保持一样的结构,一个3d表示,渲染新视图,SDS优化。不同的是论文是早期使用3d gaussian splatting表示的方法。另外论文使用了DDIM和ISM等不同处理。
    此外论文用一个图对SDS过平滑进行一个可视化。简单来说,多次的降噪就是在对不同降噪结果直接求了平均,会导致过平滑。
    在这里插入图片描述

在这里插入图片描述

  1. LucidDreamer 的解决方案:
    a) 区间得分匹配 (ISM): 这是 LucidDreamer 创新的核心。 ISM 为训练用于三维形状生成的扩散模型提供了一种新方法。
  • 核心理念: ISM 不是直接预测噪声数据分布,而是侧重于学习数据两个扰动版本之间的差异(得分)。这允许更有效的训练并更好地捕获底层数据流形,从而生成更高质量的样本。
  • 工作原理:
    1. 使用不同的噪声级别对目标三维形状的两个噪声版本进行采样。
    2. 训练扩散模型以预测这两个噪声版本之间的得分(矢量差)。
    3. 在生成过程中,模型通过迭代应用学习到的得分信息来逐渐对随机三维形状进行去噪。
      b) 用于文本引导生成的得分蒸馏: 为了使用文本提示引导生成过程,LucidDreamer 使用了得分蒸馏。
  • 训练文本到得分网络: 训练一个单独的网络将文本描述映射到相应的三维形状得分。该网络充当文本域和三维形状域之间的“翻译器”。
  • 引导生成: 在生成过程中,来自文本到得分网络的得分会影响扩散过程,确保生成的三维形状与给定的文本提示一致。为了克服多面问题,论文还插入一个3d先验模块。
  1. LucidDreamer 的优势:
    高保真生成: 通过利用 ISM,LucidDreamer 可以生成具有令人印象深刻的细节和真实感的三维形状。
    增强的多样性: 与现有方法相比,使用 ISM 有助于生成更广泛的多样化形状,解决了输出重复的问题。
    有效的文本引导: 得分蒸馏方法使模型能够有效地整合文本信息,确保生成的三维形状与输入提示之间语义一致。
    此外论文用一个图对SDS过平滑进行一个可视化。简单来说,多次的降噪就是在对不同降噪结果直接求了平均,会导致过平滑。

2 效果

在这里插入图片描述

这篇关于3D 生成重建011-LucidDreamer 优化SDS过平滑结果的一种探索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001731

相关文章

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel